Impacts of transcription elongation on cardiac gene regulation during homeostasis and regeneration
转录延伸对稳态和再生过程中心脏基因调控的影响
基本信息
- 批准号:10558736
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-07 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAdultAttentionBindingBiogenesisBiological ModelsBiologyCardiacCardiac MyoblastsCardiac MyocytesCardiac healthCause of DeathCell physiologyCellular StructuresCessation of lifeChIP-seqComplexDNA Polymerase IIDataDefectDevelopmentDilated CardiomyopathyEmbryoEpigenetic ProcessExcisionFailureGene ExpressionGene Expression RegulationGene TransferGenesGeneticGenetic TranscriptionGoalsHealthcare SystemsHeartHeart InjuriesHeart failureHeterogeneityHomeostasisInjuryInvestigationKnock-outKnowledgeLeadMaintenanceMediatingMessenger RNAModelingMolecularMorphologyMusMuscle CellsMyocardialMyocardial InfarctionMyocardial dysfunctionNatural regenerationPathogenesisPathologicPhenotypePhysiologicalPhysiologyPlayProliferatingRNARNA Polymerase IIRegulationRepressionRoleSarcomeresStressStructureTimeTranscription ElongationTranscription InitiationTranscriptional RegulationVentricularZebrafishbiological adaptation to stresscardiac repaircardiogenesisepigenetic regulationepigenomeheart damageheart functionheart preservationhistone modificationinjury and repairinsightknock-downloss of functionmetabolomicsmodel organismmolecular arraymouse geneticsneonatal injurynoveloverexpressionpancreatic differentiation 2 proteinpreservationpreventprogenitorprogramspromoterprotective effecttherapeutic targettranscription factortranscriptometranscriptome sequencingtranscriptomics
项目摘要
Project Summary
Heart failure is a major cause of death in the US, contributing significantly to the burden of the healthcare
system every year. Despite the heterogeneity of the causes of heart failure, the heart undergoes gene
expression changes during failure resulting in structural and functional defects. Our long-term goal is to
understand the transcriptional regulatory mechanisms that sustain the structure and function of the heart in
homeostasis and that can induce cardiac protective effects or promote cardiac repair upon injury.
In this application, we will use the transcription regulator Rtf1 as a point of entry to address this critical question
in cardiac biology.
Critical roles for transcription elongation in cellular RNA biogenesis have gained increasing attention in recent
years, but how they contribute to the maintenance of cardiac homeostasis and how modulating transcription
elongation might promote cardiac repair in damaged hearts remain elusive. Using both zebrafish and mouse
genetics, we have previously shown that Rtf1 activity is essential for myocardial development. Rtf1 depletion
destabilizes promoter-proximal pausing of RNA Pol II, blocks activation of the myocardial gene program and
prevents myocardial progenitor cell formation resulting in a heartless embryo. In preliminary data leading to
this proposal, we have found that Rtf1 plays important roles in normal and stressed adult hearts. Ablation of
Rtf1 activity in adult cardiomyocytes leads to rapid heart failure with dysregulated cardiac gene expression
and a loss of contractility. In stressed hearts, we observed elevated Rtf1 expression within cardiomyocytes
after injury, suggesting a role for Rtf1 in the cardiac stress response. Overexpression of Rtf1 also promotes
cardiomyocyte proliferation in a zebrafish ventricular resection model. The dysregulated cardiac gene
expression and reduction of epigenetic marks of active transcription in Rtf1-deficient failing hearts suggest
that Rtf1 functions as a key transcriptional regulator for cardiomyocytes. These findings lead to our central
hypothesis that Rtf1 modulates transcriptional pausing and co-transcriptional histone modification to facilitate
efficient mRNA synthesis in cardiomyocytes and thereby sustains cardiac structure and function in normal
and stressed hearts. We have delineated three Aims to interrogate this hypothesis. Specifically, we will
investigate Rtf1-dependent gene expression in cardiomyocytes and decipher the progressive molecular,
cellular, physiological and metabolomic changes occurring during heart failure (Aim 1). We will use an array
of molecular approaches to uncover the molecular basis by which Rtf1 impacts the transcriptome in
cardiomyocytes (Aim 2). We will also investigate how Rtf1 responds to cardiac damage and the potential of
manipulating Rtf1 activity to promote cardiac repair (Aim 3). Accomplishing these aims will not only provide
significant new insights into the regulatory network of cardiac gene expression but also a possible therapeutic
target to promote cardiac health and post-injury repair.
项目摘要
心力衰竭是美国死亡的主要原因,显著增加了医疗保健的负担
系统每年。尽管心力衰竭的原因是异质性的,但心脏经历了基因突变。
在失败期间表达改变导致结构和功能缺陷。我们的长期目标是
理解维持心脏结构和功能的转录调控机制,
体内平衡,并且可以诱导心脏保护作用或促进损伤后的心脏修复。
在本申请中,我们将使用转录调节因子Rtf1作为切入点来解决这一关键问题
心脏生物学
转录延长在细胞RNA生物合成中的重要作用近年来受到越来越多的关注
但是它们如何有助于维持心脏稳态以及如何调节转录
延长可能促进受损心脏的心脏修复仍然是难以捉摸的。用斑马鱼和老鼠
遗传学,我们以前已经表明Rtf1活性是心肌发育所必需的。Rtf1缺失
使RNA Pol II的启动子近端暂停不稳定,阻断心肌基因程序的激活,
阻止心肌祖细胞形成,导致无心胚胎。初步数据显示,
根据这一提议,我们发现Rtf1在正常和应激的成人心脏中起重要作用。消融
成年心肌细胞中Rtf1活性导致快速心力衰竭并伴有心脏基因表达失调
以及收缩力的丧失。在应激的心脏中,我们观察到心肌细胞中Rtf1的表达升高,
损伤后,提示Rtf1在心脏应激反应中的作用。Rtf1的过度表达也促进了
斑马鱼心室切除模型中的心肌细胞增殖。心脏基因失调
在Rtf1缺陷的衰竭心脏中,表观遗传标记的表达和减少表明,
Rtf1是心肌细胞的关键转录调节因子。这些发现导致我们的中央
假设Rtf1调节转录暂停和共转录组蛋白修饰,
在心肌细胞中有效的mRNA合成,从而维持正常的心脏结构和功能。
心有压强。我们提出了三个目标来质疑这一假设。具体来说,我们将
研究心肌细胞中Rtf1依赖性基因的表达,
心力衰竭期间发生的细胞、生理和代谢组学变化(目标1)。我们将使用数组
的分子方法来揭示Rtf1影响转录组的分子基础,
心肌细胞(Aim 2)。我们还将研究Rtf1如何对心脏损伤做出反应,以及
操纵Rtf1活性以促进心脏修复(目的3)。实现这些目标不仅将提供
这是对心脏基因表达调控网络的重要新见解,也是一种可能的治疗方法。
以促进心脏健康和损伤后修复为目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAU-NIAN CHEN其他文献
JAU-NIAN CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAU-NIAN CHEN', 18)}}的其他基金
Impacts of transcription elongation on cardiac gene regulation during homeostasis and regeneration
转录延伸对稳态和再生过程中心脏基因调控的影响
- 批准号:
10326342 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Rtf1-dependent transcriptional regulation of heart development
心脏发育的 Rtf1 依赖性转录调控
- 批准号:
10152694 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Rtf1-dependent transcriptional regulation of heart development
心脏发育的 Rtf1 依赖性转录调控
- 批准号:
9925246 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Genetic regulation of cardiac proliferation during development and in regeneration
发育和再生过程中心脏增殖的遗传调控
- 批准号:
9130427 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Elucidating the molecular mechanisms regulating embryonic cardiac rhythmicity
阐明调节胚胎心律的分子机制
- 批准号:
8223164 - 财政年份:2010
- 资助金额:
$ 39万 - 项目类别:
Elucidating the molecular mechanisms regulating embryonic cardiac rhythmicity
阐明调节胚胎心律的分子机制
- 批准号:
7889281 - 财政年份:2010
- 资助金额:
$ 39万 - 项目类别:
Elucidating the molecular mechanisms regulating embryonic cardiac rhythmicity
阐明调节胚胎心律的分子机制
- 批准号:
8424959 - 财政年份:2010
- 资助金额:
$ 39万 - 项目类别:
Elucidating the molecular mechanisms regulating embryonic cardiac rhythmicity
阐明调节胚胎心律的分子机制
- 批准号:
8061572 - 财政年份:2010
- 资助金额:
$ 39万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Research Grant














{{item.name}}会员




