Synchronized brain dynamics and eye movement trajectory for objective evaluation of robot-assisted surgical skills
同步大脑动力学和眼球运动轨迹,客观评估机器人辅助手术技能
基本信息
- 批准号:10569505
- 负责人:
- 金额:$ 39.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Active LearningAddressAlgorithmsAnastomosis - actionAnimalsApplied SkillsAreaAutomobile DrivingBehaviorBrainCategoriesClassificationClinicalCognitiveCompetenceComplexDataDevelopmentDissectionDrynessEducational CurriculumElectroencephalographyEngineeringEvaluationEyeEye MovementsFeedbackGoalsHourHumanHysterectomyIndividualInjuryKnowledgeLearningLengthLiteratureManualsMeasuresMethodologyMethodsModalityModelingMonitorMorbidity - disease rateNeedlesNephrectomyNeurosciencesNotificationOperating RoomsOperative Surgical ProceduresOutcomePathway AnalysisPatient-Focused OutcomesPatientsPatternPerformanceProcessPublishingResearchResearch ProposalsRobotRoboticsRoleRunningSeriesSignal TransductionStructureSurgeonSurgical suturesSystemTactileTechniquesTechnologyTimeTrainingWristadaptive learningalgorithm developmentalgorithm traininganimal tissuearmcognitive processconvolutional neural networkcostdeep learningdensitydesigngazehuman diseaseimprovedimproved outcomelearning networklearning strategymotor learningneural networkneural network algorithmoperationpatient safetyregression algorithmrobot assistancerobotic devicerobotic trainingsafety outcomessensorsignal processingsimulationskill acquisitionskillssurgery outcometool
项目摘要
Complicated and costly robot assisted surgery (RAS) training results in less frequent use of this technology in
several complex areas of surgery, and consequently ends up in harm. RAS requires a unique blend of skills in
addition to manual competence with human-machine interaction skills, while operating remotely from patient
with no tactile feedback. To address this challenge, numerous studies have focused on simulation-based
robotic training curricula, like Fundamental Skills of Robotic Surgery (FSRS), to develop and assess the
performance level of the surgeon operator. However, such training tools were developed based on metrics
measured by performance on a simulator and other subjectively evaluated metrics. The goal of this research
proposal is to develop a tool for objective RAS skill assessment and a model for performance
monitoring. We hypothesize that brain dynamics - Electroencephalogram (EEG) - and eye movement
behavior are able to detect change of skill level and the level of surgeon’s performance. To validate this
hypothesis, we will record EEG signals and eye movement time series from subjects with different RAS
expertise levels. Ten novices, 5 beginners, 5 advanced beginners, and 5 expert surgeons will be included in
the study and continuously perform four levels of designed RAS training tasks on surgical robot simulator, dry
lab, and animal lab during one year; (1) performing six basic tasks on surgical simulator. All subjects will
practice these tasks during two weekly sessions and each practice session takes 2 hours. (2) Subjects will
practice 3 tasks of peg transfer, pattern cutting, and suturing on dry lab. (3) Subjects will practice 2 tasks
(anastomosis and dissection) on animal tissue and also on plastic models. (4) Subjects will practice two
operations of nephrectomy and hysterectomy on animal lab, 2 operations in each session, and each session
takes 3 hours and occurs every other week. Two master surgeons will subjectively evaluate performance of
subjects (all 25 subjects; Score scale: 1-20) and expertise level (four categories) in performing the designed
tasks, every practice session. Master surgeons evaluate surgeon’s skill and performance throughout task and
notify change of skill level and performance through time.
We will then develop a ‘deep convolutional neural network’ algorithm trained by EEG and eye movement time
series through running windows with equal size, to classify subject skill level into four categories of a novice,
beginner, advanced beginner, and expert. We will also use network neuroscience techniques to extract
engineered features from EEG and eye movement data and use them for training a regression algorithm to
develop a model for performance level prediction. Ultimately, the developed objective skill evaluation tool and
performance monitoring model will make RAS training more efficient by providing feedback to the trainee
regarding his/her skills and directing him/her to focus on skills needed improvement. These improvements will
result in more frequent use of RAS in complex surgical areas and ultimately lead to patient safety.
复杂且昂贵的机器人辅助手术(RAS)培训导致该技术的使用频率较低,
几个复杂的手术区域,因此最终受到伤害。RAS需要独特的技能组合,
除了人工能力和人机交互技能之外,还可以从患者处远程操作
没有触觉反馈。为了应对这一挑战,许多研究都集中在基于模拟的
机器人培训课程,如机器人手术的基本技能(FSRS),以开发和评估
外科医生操作员的性能水平。然而,这种培训工具是根据衡量标准开发的
通过模拟器上的性能和其他主观评估指标来衡量。本研究的目的
建议是开发一个客观评估RAS技能的工具和一个绩效模型
监测.我们假设脑动力学-脑电图(EEG)-和眼球运动
行为能够检测技能水平和外科医生表现水平的变化。验证此
假设,我们将记录不同RAS受试者的EEG信号和眼动时间序列
专业水平。将包括10名新手,5名初学者,5名高级初学者和5名专家外科医生,
在手术机器人模拟器上研究并连续执行四个级别设计RAS训练任务,
实验室和动物实验室;(1)在手术模拟器上执行六项基本任务。所有受试者将
每周两次练习这些任务,每次练习2小时。(2)受试者将
练习3项任务:转移钉、切割图案和在干燥实验室中进行切割。(3)受试者将练习2项任务
(吻合和解剖)在动物组织上,也在塑料模型上。(4)受试者将练习两次
在动物实验室进行肾切除术和子宫切除术,每次2例,每次
需要3小时,每隔一周发生一次。两名主刀医生将主观评价
受试者(所有25个受试者;评分标准:1-20)和专业水平(四个类别)在执行设计的
任务,每一次练习。外科大师在整个任务中评估外科医生的技能和表现,
通知技能水平和性能随时间的变化。
然后我们将开发一种通过EEG和眼球运动时间训练的'深度卷积神经网络'算法
系列通过运行大小相等的窗口,将学科技能水平划分为四类新手,
初学者、高级初学者和专家。我们还将使用网络神经科学技术来提取
从EEG和眼球运动数据中设计特征,并将其用于训练回归算法,
建立绩效水平预测模型。最终,开发的客观技能评估工具和
绩效监控模型将通过向受训者提供反馈,使RAS培训更加有效
了解他/她的技能,并指导他/她专注于需要改进的技能。这些改进将
导致RAS在复杂手术区域的使用更加频繁,并最终导致患者安全。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Somayeh Besharat Shafiei其他文献
Somayeh Besharat Shafiei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Somayeh Besharat Shafiei', 18)}}的其他基金
Synchronized brain dynamics and eye movement trajectory for objective evaluation of robot-assisted surgical skills
同步大脑动力学和眼球运动轨迹,客观评估机器人辅助手术技能
- 批准号:
10374841 - 财政年份:2020
- 资助金额:
$ 39.31万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Research Grant