Mechanistic dissection of a novel meiotic exit regulation by autophagy

自噬新型减数分裂退出调节的机制剖析

基本信息

  • 批准号:
    10569656
  • 负责人:
  • 金额:
    $ 34.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Targeted proteolysis is essential for regulating meiosis, the specialized program that produces haploid gametes from diploid progenitor cells. Although the role of the ubiquitin/proteasome system in meiosis has been well-described, the potential of autophagy to mediate distinct steps during the meiotic divisions remains unexplored. My laboratory recently made the novel discovery that autophagy, a conserved pathway to lysosomal degradation, is essential for faithful meiotic chromosome segregation and meiosis completion in budding yeast. We further identified a major target of this meiotic autophagy activity — Rim4, a meiosis-specific RNA binding protein (RBP) that adapts an amyloid-like state and sequesters mRNAs encoding specific proteins involved in meiotic regulation, chromosome segregation and sporulation (cytokinesis). Importantly, during meiotic and early embryotic cell development, gene expression is primarily regulated post-transcriptionally using maternal mRNAs that are selectively bound by RBPs. The temporal translation of meiotic proteins, which control meiotic cell progression, is regulated by these RBPs through largely unknown and varied mechanisms [10]. Our finding reveals a novel link between autophagy and meiotic translation. In addition, we discovered that autophagy degrades a set of proteins that are associated with spindle pole body (SPB, the yeast centrosome) structure and function, which is essential for both meiosis and sporulation. We propose that autophagic degradation of specific proteins, e.g. Rim4 amyloid-like aggregates, Spc42 and Spo74, at multiple meiotic stages contributes to meiosis-programed translational control and meiosis-coupled SPB dynamics. These novel roles of selective autophagy converge to coordinate meiosis and sporulation. The major goals of this proposal are (1) to mechanistically dissect how autophagy regulates Rim4 degradation and what effects this has on meiotic gene expression of Rim4 mRNA targets; and (2) to reveal the role of meiotic autophagy in restraining the number of SPB per cell. Such understanding will reveal new principles underlying mRNA-specific translational control and meiotic regulation and, if autophagy is involved in human meiosis as well, inform strategies for prevention of chromosomal disorders, e.g. Turner syndrome (monosomy X, frequency: 1/2,500 newborn girls) [11] and Down syndrome (trisomy 21, frequency: 1/800 newborns) [12]. This study will also shed light on the design of therapeutics to clear deleterious amyloid-like aggregates associated with neurodegeneration (e.g. amyloid beta in Alzheimer’s disease). This grant proposes to: (1) Elucidate how autophagy promotes Rim4 degradation to regulate meiotic translation; and (2) Investigate how autophagy regulates yeast centrosome dynamics during meiosis.
项目摘要 有针对性的蛋白质水解对于调节减数分裂是必不可少的,减数分裂是产生单倍体的专门程序 来自二倍体祖细胞的配子。虽然泛素/蛋白酶体系统在减数分裂中的作用已经被证实, 已经被很好地描述,自噬的潜力,介导不同的步骤,在减数分裂 仍然未被探索。 我的实验室最近有了新的发现,自噬,一种保守的途径, 降解,是必需的忠实减数分裂染色体分离和减数分裂完成的芽 酵母我们进一步确定了减数分裂自噬活性的主要靶点-Rim 4,一种减数分裂特异性RNA, 一种适应淀粉样状态并隔离编码特定蛋白质的mRNA的结合蛋白(RBP 参与减数分裂调节、染色体分离和孢子形成(胞质分裂)。重要的是,在 在减数分裂和早期胚胎细胞发育中,基因表达主要在转录后调节 使用被RBP选择性结合的母体mRNA。减数分裂蛋白质的时间翻译, 控制减数分裂细胞进程,是由这些RBP通过很大程度上未知和不同的调节 机制[10]。我们的发现揭示了自噬和减数分裂翻译之间的新联系。在 此外,我们发现自噬降解了一组与纺锤体极体相关的蛋白质 (SPB酵母中心体)的结构和功能,这对于减数分裂和孢子形成都是必不可少的。我们 提出特异性蛋白质的自噬降解,例如Rim 4淀粉样聚集体、Spc 42 和Spo74,在多个减数分裂阶段有助于减数分裂程序的翻译控制, 减数分裂耦合SPB动力学。这些选择性自噬的新作用汇聚到协调减数分裂 和孢子形成。 该提案的主要目标是(1)机械地剖析自噬如何调节Rim 4 降解和这对Rim 4 mRNA靶点的减数分裂基因表达的影响;以及(2)揭示Rim 4 mRNA靶点的降解, 减数分裂自噬在抑制每个细胞SPB数量中的作用。这样的理解将揭示新的原理 潜在的mRNA特异性翻译控制和减数分裂调控,如果自噬参与人类 减数分裂,以及为预防染色体疾病,如特纳综合征(单体性 X,频率:12,500新生儿女孩)[11]和唐氏综合征(21三体,频率:1/800新生儿)[12]。 这项研究也将阐明治疗设计,以清除有害的淀粉样蛋白聚集体 与神经变性相关(例如阿尔茨海默病中的β淀粉样蛋白)。该补助金旨在:(1) 阐明自噬如何促进Rim 4降解以调节减数分裂翻译;和(2)研究 自噬如何调节减数分裂期间的酵母中心体动力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

fei wang其他文献

fei wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('fei wang', 18)}}的其他基金

Mechanistic dissection of a novel meiotic exit regulation by autophagy
自噬新型减数分裂退出调节的机制剖析
  • 批准号:
    10116429
  • 财政年份:
    2020
  • 资助金额:
    $ 34.44万
  • 项目类别:
Mechanistic dissection of a novel meiotic exit regulation by autophagy - Equipment Supplement
通过自噬进行新型减数分裂退出调节的机制剖析 - 设备补充
  • 批准号:
    10796726
  • 财政年份:
    2020
  • 资助金额:
    $ 34.44万
  • 项目类别:
Mechanistic dissection of a novel meiotic exit regulation by autophagy
自噬新型减数分裂退出调节的机制剖析
  • 批准号:
    10357891
  • 财政年份:
    2020
  • 资助金额:
    $ 34.44万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 34.44万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.44万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 34.44万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.44万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 34.44万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 34.44万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.44万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 34.44万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 34.44万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.44万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了