Engineering a calcium reporter gene for magnetic resonance imaging of neural activity
设计用于神经活动磁共振成像的钙报告基因
基本信息
- 批准号:10575714
- 负责人:
- 金额:$ 30.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgonistAnimalsAreaAxonBehaviorBinding ProteinsBiophysicsBlood flowBrainBrain imagingBrain regionBuffersCalciumCalcium SignalingCell LineCellsChemicalsCoupledCouplingDataDecision MakingDevelopmentDiseaseEmotionalEngineeringEscherichia coliEventFOS geneFluorescenceFunctional Magnetic Resonance ImagingFutureGenerationsGeneticGenetic EngineeringGoalsHippocampus (Brain)Histological TechniquesImageImaging DeviceImaging TechniquesIonophoresLearningLens FiberLeukocyte L1 Antigen ComplexLibrariesLocationMagnetic ResonanceMagnetic Resonance ImagingMammalian CellManganeseMeasuresMediatingMethodsMicroscopyModalityModelingMolecularMonitorMusMutagenesisNeurobiologyNeuronsNeurosciencesOperative Surgical ProceduresOptical MethodsOpticsPatientsPatternPropertyProtein EngineeringProteinsRattusReporterReporter GenesResearchResolutionRodentSensorySignal TransductionSpecificityStimulusTechniquesTechnologyTestingTimeToxic effectTransgenic AnimalsVariantViral VectorVirusWorkbaseblood-brain barrier crossingbrain volumecalcium indicatorcell typecontrast imagingexecutive functionexperiencefluorescence imaginghemodynamicsimaging approachimaging modalityin vivolight scatteringmulti-photonneural circuitneuroregulationneurosurgeryneurotoxicityneurotransmissionoptical fiberoptogeneticsprimary outcomeprotein expressionrelating to nervous systemresponsescreeningsensortool
项目摘要
PROJECT SUMMARY
To encode sensory experience and generate specific behaviors, the mammalian brain relies on functional
coupling between networks of neurons distributed over multiple regions of the brain. Imaging techniques, which
can observe molecular events at a brain-wide scale, are therefore needed to understand how these
interconnected networks function as a whole. Fluorescent genetically encoded calcium indicators (GECIs)
enable optical recording of calcium dynamics (a reliable measure of spiking activity) from well-defined cell types;
but operate over small volumes (~ 1 mm3), limiting access to neural signals in localized neural circuits. Broader
areas (~ 10 x 10 mm2) may be accessed with widefield optical methods; but light scattering limits imaging to sub-
cortical depths in mice. On the other hand, techniques like functional MRI (fMRI) permit activation mapping in
arbitrarily large brain volumes; but the ensuing signal gives only an indirect indication of neural activity based on
localized changes in hemodynamic parameters. Histological techniques like c-fos immunostaining can also
reveal whole-brain activation patterns; but only at a single time point per subject, thus failing to adequately
capture dynamically evolving network properties. These collective limitations create a critical technological gap
for large-scale monitoring of neural activity inside the intact mammalian brain. In this project, we will pilot steps
to address the above challenge by developing genetic tools for imaging calcium with MRI; and we will examine
their ability to faithfully monitor calcium dynamics in cultured neurons. The proposed sensors will be based on a
manganese-binding protein class known as calprotectin, which we introduced in 2021 as the first protein-based
MRI sensor for calcium. These first generation sensors are responsive to calcium concentrations exceeding 5
μM, which is much larger than the typical dynamic range (0.1-1 μM) experienced in neurons during activity.
Starting with the parental sensor protein and building on a strong set of preliminary data, our goals here will be
to optimize sensitivity for calcium sensing down to the neuronal range (Specific Aim 1), establish methods to
genetically express the sensors in mammalian neurons, examine potential sensor-associated toxicity and take
remedial steps if needed, and finally show that we can use these sensors to dynamically image calcium signals
in neurons stimulated with agonists and optogenetics (Specific Aim 2). The primary outcome of this work will be
the development of new neuroscience tools for directly observing calcium dynamics, while combining brain-wide
access with all the advantages of genetic encoding, including cell-specific targeting, long-term expression, and
access to a wide array of neuroscience methods ranging from axon-tracing and BBB-crossing viruses to
transgenic animals. The work here will thus set the stage for previously impossible in vivo studies on identifying
functionally coupled networks involved in everything from learning to executive control and decision making, as
well as how these connections are modified in disease states.
项目总结
为了编码感觉体验和产生特定的行为,哺乳动物的大脑依赖于
分布在大脑多个区域的神经元网络之间的耦合。成像技术,它
可以在全脑范围内观察分子事件,因此需要了解这些
互连的网络作为一个整体发挥作用。荧光基因编码钙指示剂(GECI)
能够从明确定义的细胞类型中光学记录钙动态(一种可靠的尖峰活性测量);
但工作在小体积(~1mm3)上,限制了对局部神经电路中神经信号的访问。范围更广
可以用广域光学方法访问区域(~10x10mm2);但光散射将成像限制在亚
小鼠的皮质深度。另一方面,像功能磁共振成像(FMRI)这样的技术允许在
任意大的大脑体积;但随后的信号仅给出神经活动的间接指示,基于
血流动力学参数的局部改变。C-fos免疫染色等组织学技术也可以
揭示全脑激活模式;但仅在每个受试者的单个时间点,因此未能充分
捕获动态变化的网络属性。这些集体限制造成了严重的技术差距
用于大规模监测完好的哺乳动物大脑内的神经活动。在这个项目中,我们将试点步骤
通过开发用于核磁共振成像钙的基因工具来应对上述挑战;我们将研究
他们能够忠实地监测培养的神经元中的钙动态。拟议的传感器将基于
被称为钙保护素的锰结合蛋白类,我们于2021年推出,作为第一种基于蛋白质的
核磁共振钙质传感器。这些第一代传感器对钙浓度超过5
μM,这比神经元在活动过程中经历的典型动态范围(0.1-1μM)大得多。
从父母的感受器蛋白开始,以一组强大的初步数据为基础,我们的目标将是
为了优化钙离子感应的敏感度(具体目标1),建立以下方法
在哺乳动物神经元中以遗传方式表达传感器,检测潜在的传感器相关毒性并服用
如果需要,可以采取补救措施,最后证明我们可以使用这些传感器动态成像钙信号
在用激动剂和光遗传学刺激的神经元中(特定目标2)。这项工作的主要成果将是
开发新的神经科学工具,直接观察钙动力学,同时结合全脑
利用遗传编码的所有优势,包括细胞特异性靶向、长期表达和
获取广泛的神经科学方法,从轴突追踪和血脑屏障交叉病毒到
转基因动物。因此,这项工作将为以前不可能进行的体内识别研究奠定基础。
功能耦合网络涉及从学习到执行控制和决策的所有方面,如
以及这些连接在疾病状态下是如何改变的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arnab Mukherjee其他文献
Arnab Mukherjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arnab Mukherjee', 18)}}的其他基金
Engineering a calcium reporter gene for magnetic resonance imaging of neural activity
设计用于神经活动磁共振成像的钙报告基因
- 批准号:
10708944 - 财政年份:2022
- 资助金额:
$ 30.79万 - 项目类别:
Engineering fluorescence and magnetic resonance reporter genes for imaging biological function in hypoxic cells and in vivo
工程化荧光和磁共振报告基因,用于缺氧细胞和体内生物功能成像
- 批准号:
10687183 - 财政年份:2019
- 资助金额:
$ 30.79万 - 项目类别:
Engineering fluorescence and magnetic resonance reporter genes for imaging biological function in hypoxic cells and in vivo
工程化荧光和磁共振报告基因,用于缺氧细胞和体内生物功能成像
- 批准号:
10266048 - 财政年份:2019
- 资助金额:
$ 30.79万 - 项目类别:
Engineering fluorescence and magnetic resonance reporter genes for imaging biological function in hypoxic cells and in vivo
工程化荧光和磁共振报告基因,用于缺氧细胞和体内生物功能成像
- 批准号:
10000120 - 财政年份:2019
- 资助金额:
$ 30.79万 - 项目类别:
Engineering fluorescence and magnetic resonance reporter genes for imaging biological function in hypoxic cells and in vivo
工程化荧光和磁共振报告基因,用于缺氧细胞和体内生物功能成像
- 批准号:
9797597 - 财政年份:2019
- 资助金额:
$ 30.79万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




