Algorithmic fairness in predictive models to eliminate disparities in adverse infant outcomes: A case for race

预测模型中的算法公平性可消除不良婴儿结局的差异:种族案例

基本信息

  • 批准号:
    10571289
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-26 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Non-Hispanic Black infants have twice the rates of low birthweight births as non-Hispanic White infants. As disparities in adverse birth outcomes drive disparities in infant mortality and adverse outcomes across the life course, improving inequities in birth outcomes is a national priority. Despite this longstanding inequity, many public and private payers are unable to address disparities in adverse infant outcomes because of a lack of race/ethnicity data. This K01 fills a critical need for evidence-based recommendations for collection and use of racial/ethnic data among payers to enable population health management programs to develop predictive algorithms that could be used to reduce adverse birth outcomes. Failure to include race/ethnicity in predictive models used for resource allocation may ultimately lead to biased algorithms that exacerbate health disparities. Aim 1 of this study will use an algorithmic fairness framework to test multiple algorithms for developing predictive models for low birthweight birth. In addition to testing model accuracy, predictive models will be tested for seven measures of algorithmic fairness to assess whether having race/ethnicity improves algorithmic fairness (e.g., equal [or better] predictive accuracy for non-White relative to White women) after applying four fairness-enhancing approaches. This project will utilize medical claims, birth certificates, and beneficiary information from the Arkansas All Payer Claims Database. Linkage to the birth certificates uniquely allows this study to have race/ethnicity, which are absent in the commercial claims given lack of collection by most payers. The seminal Institute of Medicine Report Unequal Treatment recommended collection of race/ethnicity to mitigate disparities in health and healthcare delivery; however, it is well known that payers fear accusations of redlining and rarely collect race/ethnicity in most states. Research on payer and provider views regarding collection of race/ethnicity has been conducted, but similar research on the views of minority beneficiaries are severely lacking. Aim 2 of this study will conduct racially-homogenous focus groups among Black, Hispanic, and Marshallese women in Arkansas regarding attitudes on acceptability of collecting and using race/ethnicity data as well as administrative aspects (e.g., when to collect the data), with an emphasis on perinatal programs. These aims will provide an evidence-base and serve as a national model for collecting and using racial/ethnic data with community input. Large third-party payers have the infrastructure to improve health disparities, but lack a community-engaged approach to inform collection and use of these data to guide development of algorithms using an equitable framework. The K01 will allow the investigator to build on her expertise in insurance claims analysis to acquire skillsets in predictive modeling, community engagement, and qualitative methodologies. These important skillsets will allow the researcher to achieve her long-term goals of becoming a productive and independent researcher with a focus on identifying and mitigating factors that serve as drivers of racial/ethnic disparities in adverse infant and maternal outcomes.
项目摘要 非西班牙裔黑人婴儿的低出生体重率是非西班牙裔白色婴儿的两倍。作为 不良出生结果的差异导致婴儿死亡率和一生不良结果的差异 当然,改善生育结果的不平等是国家的优先事项。尽管这种长期的不平等,许多 公共和私人支付者无法解决婴儿不良结局的差异,因为缺乏 种族/民族数据。本K 01满足了收集和使用基于证据的建议的迫切需求, 支付者之间的种族/民族数据,使人口健康管理计划能够预测 可以用来减少不良出生结果的算法。未将人种/种族纳入预测 用于资源分配的模型可能最终导致有偏见的算法,从而加剧健康差距。 本研究的目标1将使用算法公平性框架来测试多个算法, 低出生体重儿的预测模型。除了测试模型的准确性,预测模型将 测试了算法公平性的七项指标,以评估种族/民族是否能改善算法公平性。 公平性(例如,非白色女性相对于白色女性的预测准确性相等[或更好] 加强公平的方法。该项目将利用医疗索赔,出生证明和受益人 阿肯色州所有付款人索赔数据库的信息。与出生证明的联系使这一点成为可能。 由于大多数付款人没有收集,因此商业索赔中不存在种族/民族。 开创性的医学研究所报告不平等待遇建议收集种族/民族, 减少健康和医疗保健提供方面的差距;然而,众所周知,支付者担心被指控 在大多数州,种族/民族被划上红线,很少收集。研究付款人和供应商的意见, 已经收集了种族/民族的意见,但对少数群体受益人的意见进行了类似的研究, 严重缺乏。本研究的目标2将在黑人、西班牙裔、 阿肯色州的马绍尔妇女对收集和使用种族/族裔信息的可接受性的态度 数据以及管理方面(例如,何时收集数据),重点是围产期方案。 这些目标将提供一个证据基础,并作为收集和使用 种族/民族数据与社区投入。大型第三方支付者拥有改善健康的基础设施 差异,但缺乏一个社区参与的方法,为收集和使用这些数据提供信息, 使用公平框架开发算法。K 01可以让调查员在她的基础上 保险索赔分析方面的专业知识,以获得预测建模,社区参与和 定性方法。这些重要的技能将使研究人员实现她的长期目标, 成为一名富有成效的独立研究人员,专注于识别和减轻服务于 作为不利的婴儿和孕产妇结果的种族/民族差异的驱动因素。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clare Brown其他文献

Clare Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clare Brown', 18)}}的其他基金

Algorithmic fairness in predictive models to eliminate disparities in adverse infant outcomes: A case for race
预测模型中的算法公平性可消除不良婴儿结局的差异:种族案例
  • 批准号:
    10710210
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
  • 批准号:
    2230829
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了