Astrocyte-neuron circuits underlying cortical mechanisms of learned behavior
星形胶质细胞-神经元回路是学习行为皮质机制的基础
基本信息
- 批准号:10578270
- 负责人:
- 金额:$ 42.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAffectAstrocytesBedsBehaviorBrain DiseasesCRISPR/Cas technologyCalciumCalcium SignalingComplexComputer AnalysisCuesDataDevelopmentForelimbGene ExpressionGene Expression ProfileGene Expression ProfilingGeneticGlutamatesGoalsIndividualLearningMediatingMethodsModelingMolecularMotorMotor CortexMovementMusNeurogliaNeuronal PlasticityNeuronsNeurotransmittersPatternPhysiologicalProcessRoleShapesSodiumSpecific qualifier valueStereotypingSynapsesSynaptic TransmissionSynaptic plasticityTestingTrainingViralbrain dysfunctioncell typedifferential expressiongamma-Aminobutyric Acidhigh resolution imagingin vivoinsightknock-downlearned behaviormotor behaviormotor learningneuronal circuitryneurotransmissionneurotransmitter uptakenoveloptogeneticspreventresponsespatiotemporaltooltransmission processuptake
项目摘要
Astrocytes are the major non-neuronal cell type in the cortex and are increasingly recognized as key contributors
to the development, plasticity and function of neuronal circuits. Yet, how they participate with neurons in learned
behavior and dynamically shape the underlying cortical circuits is poorly understood. The primary motor cortex
is required for learning and executing voluntary movements: the acquisition of a cued, stereotyped, movement
in mice is accompanied by synaptic remodeling of motor cortex neurons and the emergence of coordinated
movement-related ensemble neuronal activity. Here, we propose to examine functional astrocyte mechanisms
in motor cortex that mediate synaptic plasticity and neuronal dynamics during motor learning. Astrocytes have
highly ramified fine processes that contact nearly all synapses in the cortex, where they modulate synaptic
transmission and plasticity by mechanisms that include uptake of glutamate and GABA, primarily via the
transporters GLT1 and GAT3 respectively. Astrocytes also respond to, as well as modulate, synaptic activity with
spatiotemporally heterogeneous calcium transients in their processes, termed microdomains. We will examine
the role of astrocytes in shaping motor cortex circuits as mice learn a forelimb lever push movement, including
cued response onset and reliable movement trajectory, using a range of cutting-edge approaches: simultaneous
high-resolution imaging of astrocytes and neurons in vivo, computational encoding-decoding models of astrocyte
and neuronal activity, astrocyte-specific gene expression analyses, and novel astrocyte optogenetic and
CRISPR tools alongside established chemogenetic and viral knockdown methods. Building on our preliminary
data, which demonstrate parallel learning-related changes in astrocyte microdomain responses and neuronal
responses, along with gene expression changes in astrocyte GLT1 and GAT3, in Aim 1 we will determine
functional astrocyte calcium signatures in motor cortex during learning and their relationship to neuronal activity
and behavior. We hypothesize that astrocytes shape neuronal plasticity during task learning with corresponding
plasticity in their microdomain calcium responses, which we will specify computationally. In Aim 2, we will
determine the effect of astrocyte calcium signaling on motor learning and neuronal responses. We hypothesize
that disruption of calcium transients alters the emergence of neuronal ensembles and expert behavior, potentially
by altering astrocyte gene expression of transporter mechanisms. In Aim 3, we will determine the role of
astrocyte neurotransmitter transporter function in motor cortex circuits and learning. We hypothesize that
disrupting astrocytic modulation of excitatory transmission via GLT1, and inhibitory neurotransmission via GAT3,
disrupts astrocytic calcium responses together with neuronal circuit plasticity and behavior. Together, these
studies will provide a mechanistic, computational view of astrocyte involvement in the function and plasticity of
cortical circuits, reveal their task-specific contributions to neuronal responses and learned behavior, and provide
the basis for understanding their role in a range of brain disorders and diseases.
星形胶质细胞是大脑皮质中主要的非神经细胞类型,越来越被认为是关键贡献者。
对神经元回路的发育、可塑性和功能的影响。然而,它们是如何与神经元一起参与学习的
行为和动态塑造潜在的大脑皮层回路还知之甚少。初级运动皮质
是学习和执行自愿动作所必需的:获得一个暗示的、刻板的、
在小鼠中伴有突触重塑的运动皮质神经元的出现和协调
与运动相关的整体神经元活动。在这里,我们建议研究星形胶质细胞的功能机制。
在运动学习过程中调节突触可塑性和神经元动力学的运动皮质。星形胶质细胞有
高度分叉的精细突起与皮质中几乎所有的突触接触,在那里它们调节突触
传递和可塑性的机制,包括摄取谷氨酸和GABA,主要是通过
转运蛋白GLT1和GAT3。星形胶质细胞也对突触活动作出反应,并通过
在其过程中的时空不均匀的钙瞬变,被称为微域。我们将研究
在小鼠学习前肢推力运动时,星形胶质细胞在形成运动皮质回路中的作用,包括
提示响应开始和可靠的移动轨迹,使用一系列尖端方法:同时
星形胶质细胞和神经元的体内高分辨率成像,星形胶质细胞的计算编码-解码模型
和神经元活性,星形胶质细胞特异性基因表达分析,以及新的星形胶质细胞光遗传和
CRISPR工具与成熟的化学遗传和病毒敲除方法相结合。在我们初步的基础上
数据,显示与学习相关的星形胶质细胞微域反应和神经元的平行变化
反应,以及星形胶质细胞GLT1和GAT3基因表达的变化,在目标1中,我们将确定
学习过程中运动皮质星形胶质细胞功能钙信号及其与神经元活动的关系
和行为。我们假设星形胶质细胞在任务学习过程中形成神经元可塑性,并相应地
他们的微域钙反应的可塑性,我们将通过计算来具体说明。在目标2中,我们将
确定星形胶质细胞钙信号对运动学习和神经元反应的影响。我们假设
钙瞬变的这种干扰潜在地改变了神经元集合和专家行为的出现
通过改变星形胶质细胞转运蛋白的基因表达机制。在目标3中,我们将确定
星形胶质细胞神经递质转运体在运动皮质回路和学习中的作用。我们假设
通过GLT1干扰星形胶质细胞对兴奋性传递的调节,通过GAT3抑制神经传递,
破坏星形细胞的钙反应以及神经元回路的可塑性和行为。加在一起,这些
研究将提供星形胶质细胞参与脑胶质细胞功能和可塑性的机制和计算观点。
大脑皮层回路,揭示它们对神经元反应和习得行为的特定任务贡献,并提供
这是了解它们在一系列大脑紊乱和疾病中所起作用的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MRIGANKA SUR其他文献
MRIGANKA SUR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MRIGANKA SUR', 18)}}的其他基金
Neuron-astrocyte mechanisms of norepinephrine in goal-directed learning
去甲肾上腺素在目标导向学习中的神经元星形胶质细胞机制
- 批准号:
10651486 - 财政年份:2023
- 资助金额:
$ 42.83万 - 项目类别:
Astrocyte-neuron circuits underlying cortical mechanisms of learned behavior
星形胶质细胞-神经元回路是学习行为皮质机制的基础
- 批准号:
10709012 - 财政年份:2022
- 资助金额:
$ 42.83万 - 项目类别:
Spatiotemporal dynamics of locus coeruleus circuits during learned behavior
学习行为期间蓝斑环路的时空动态
- 批准号:
10380042 - 财政年份:2021
- 资助金额:
$ 42.83万 - 项目类别:
Spatiotemporal dynamics of locus coeruleus circuits during learned behavior
学习行为期间蓝斑环路的时空动态
- 批准号:
10576924 - 财政年份:2021
- 资助金额:
$ 42.83万 - 项目类别:
Spatiotemporal dynamics of locus coeruleus circuits during learned behavior
学习行为期间蓝斑环路的时空动态
- 批准号:
10199219 - 财政年份:2021
- 资助金额:
$ 42.83万 - 项目类别:
Novel tools for spatiotemporal modulation of astrocytes in neuronal circuits
神经元回路中星形胶质细胞时空调节的新工具
- 批准号:
9810860 - 财政年份:2019
- 资助金额:
$ 42.83万 - 项目类别:
Astrocyte-neuron interactions in visual cortex circuits
视觉皮层回路中星形胶质细胞-神经元的相互作用
- 批准号:
10092163 - 财政年份:2018
- 资助金额:
$ 42.83万 - 项目类别:
Cortical circuits and information flow during memory-guided perceptual decisions
记忆引导的感知决策过程中的皮层回路和信息流
- 批准号:
8935967 - 财政年份:2014
- 资助金额:
$ 42.83万 - 项目类别:
Cortical circuits and information flow during memory-guided perceptual decisions
记忆引导的感知决策过程中的皮层回路和信息流
- 批准号:
8826872 - 财政年份:2014
- 资助金额:
$ 42.83万 - 项目类别:
Molecular and functional mechanisms underlying binocular vision
双眼视觉的分子和功能机制
- 批准号:
7782389 - 财政年份:2010
- 资助金额:
$ 42.83万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 42.83万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 42.83万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 42.83万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 42.83万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 42.83万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 42.83万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.83万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 42.83万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.83万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 42.83万 - 项目类别:
Research Grant














{{item.name}}会员




