Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
基本信息
- 批准号:10572539
- 负责人:
- 金额:$ 12.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAcuteAcute Lymphocytic LeukemiaAddressAgreementArchitectureAwardBenchmarkingBiologicalBiological AssayBlood Component RemovalCAR T cell therapyCISH geneCell LineCellsCellular Indexing of Transcriptomes and Epitopes by SequencingChromatinChromatin StructureComputer softwareDNADataDevelopmentDistalEducational StatusElementsEnhancersFoundationsFred Hutchinson Cancer Research CenterFrequenciesGene ExpressionGene Expression RegulationGenesGenomeGenomicsGoalsHi-CHistonesHumanImmunologyImmunotherapeutic agentImmunotherapyIndividualInvestigationJointsMachine LearningMapsMembrane ProteinsMentorsMethodsModalityModelingMolecular ConformationMultiomic DataMusNeighborhoodsOrganPatientsPeripheral Blood Mononuclear CellPolycombRegulationRegulator GenesRegulatory ElementRepressionResolutionRoleSamplingSignal TransductionSignaling ProteinSpecific qualifier valueStatistical ModelsStructureSystemTechnologyThree-dimensional analysisTissuesTrainingTurtlesUntranslated RNAVariantbrain cellbrain tissuecareercareer developmentcell typechimeric antigen receptor T cellscollaborative environmentcomputer frameworkcomputerized toolsepigenomeepigenomic profilingepigenomicsgene regulatory networkgenome-widegenomic datahistone modificationinsightleukemia/lymphomamachine learning frameworkmachine learning modelmultimodalitymultiple omicsnovelpatient responseprogramspromoterresearch facilitysingle cell technologysingle-cell RNA sequencingstatistical and machine learningstatistical learningstatisticsthree-dimensional modelingtooltranscriptometranscriptomic profilingtranscriptomicstreatment response
项目摘要
PROJECT SUMMARY/ABSTRACT
Advances in single-cell technologies have enabled three-dimensional (3D) genome structure profiling and
simultaneous capture of the transcriptome and epigenome within a cell. Quantitative tools are, however, still
unable to fully leverage the unprecedented resolution of single-cell high-throughput chromatin conformation
(scHi-C) data and integrate it with other single-cell modalities. To address this challenge, I propose to (1) Develop
a single-cell gene-body associating domain (scGAD) scoring system to explore single-cell 3D genomics data in
units of genes. (2) Construct machine learning-based models to impute histone modification and 3D chromatin
interaction for simultaneously profiling of each cell's epigenomic features and 3D chromatin architectures.
Subsequently, I will develop an epigenomic regulatory score (ERS) model to infer the cell-type-specific promoter-
enhancer regulation programs at the highest single-cell and single-gene resolution. (3) Validate and extend
scGAD and ERS pipeline to CAR-T immunotherapy study to gain insights into the impact of distal gene regulation
variations on patient responses. In Aim 1, preliminary analysis on human and mouse brain tissues demonstrated
that scGAD extracts gene features agreeing well with the scRNA-seq data from the same system. As a result,
scGAD facilitates the projection of cells from 3D genomics data onto reference panels constructed by scRNA-
seq embeddings with known cell-type annotations. Hence, scGAD provides an unprecedentedly accessible and
accurate cell type annotation method based on 3D chromatin architectures. Furthermore, the successful
integration of cells from different modalities into the same network facilitates information sharing across 3D
chromatin structures, the transcriptome, and the epigenome. Aim 2 leverages such multi-modal networks to build
an ERS model. ERS jointly models the histone profiles at the promoter and distal neighborhoods of the target
gene and the 3D spatial proximity between them. Therefore, the ERS scores quantify the regulatory effects of
distal elements on a per gene and cell basis. Aim 3 will extend the integration framework in Aim 1 and 2 using
scRNA-seq as a multi-modality bridge to CITE-seq data for a deeper annotation, especially for the Peripheral
Blood Mononuclear Cells. This enables the in-depth investigation of the apheresis samples from the Acute
Lymphoma Leukemia patients to gain insight into the roles of distal regulatory elements on gene expression and
their impact on the CAR-T cell therapy responses. To succeed in achieving these aims, I will pursue additional
training with mentor Dr. Steven Henikoff (epigenomics and gene regulation), co-mentors Dr. Raphael Gottardo
(statistics), Dr. Manu Setty (machine learning), Dr. Evan Newell (immunology), and collaborator Dr. Cameron
Turtle (CAR-T cell therapy). Fred Hutchinson Cancer Research Center is an ideal institute for multi-omics single-
cell study with application to immunotherapy, providing cutting-edge research facilities and opportunities for
further career development in a rich interdisciplinary environment. A K99/R00 award will be instrumental in
addressing these challenges and furnishing me with high-level training to launch my independent scientific career.
项目摘要/摘要
单细胞技术的进步已经使得三维(3D)基因组结构分析成为可能,
同时捕获细胞内的转录组和表观基因组。然而,量化工具仍然
无法充分利用单细胞高通量染色质构象的前所未有的分辨率
(scHi-C)数据并将其与其他单细胞模式集成。为了应对这一挑战,我建议(1)制定
单细胞基因体相关结构域(scGAD)评分系统,用于探索单细胞3D基因组学数据,
基因单位(2)构建基于机器学习的模型来估算组蛋白修饰和3D染色质
这是一个非常复杂的过程,可以通过相互作用来同时分析每个细胞的表观基因组特征和3D染色质结构。
随后,我将开发一个表观基因组调控评分(ERS)模型来推断细胞类型特异性启动子-
增强子调控程序在最高的单细胞和单基因分辨率。(3)扩展和扩展
scGAD和ERS管道到CAR-T免疫治疗研究,以深入了解远端基因调控的影响
患者反应的变化。在目标1中,对人类和小鼠脑组织的初步分析表明,
scGAD提取的基因特征与同一系统的scRNA-seq数据一致。因此,在本发明中,
scGAD有助于将来自3D基因组学数据的细胞投射到由scRNA构建的参考板上。
seq嵌入与已知的单元格类型注释。因此,scGAD提供了一个前所未有的可访问的,
基于3D染色质结构的精确细胞类型注释方法。此外,成功的
将来自不同模态的细胞集成到同一网络中有助于跨3D的信息共享
染色质结构、转录组和表观基因组。Aim 2利用这种多模式网络,
一个ERS模型。ERS联合模拟了目标启动子和远端邻近区域的组蛋白谱
基因和它们之间的3D空间接近度。因此,ERS评分量化了以下方面的监管效果:
在每个基因和细胞的基础上的远端元件。目标3将扩展目标1和目标2中的集成框架,
scRNA-seq作为CITE-seq数据的多模态桥梁,用于更深入的注释,特别是对于外围设备
血单核细胞。这使得能够深入研究来自急性血液透析患者的单采样本。
淋巴瘤白血病患者,以深入了解远端调控元件对基因表达的作用,
它们对CAR-T细胞治疗反应的影响。为了实现这些目标,我将继续努力。
与导师Steven Henikoff博士(表观基因组学和基因调控),共同导师Raphael Gottardo博士
(统计学),Manu Setty博士(机器学习),Evan纽韦尔博士(免疫学),以及合作者卡梅隆博士
Turtle(CAR-T细胞疗法)。弗雷德哈钦森癌症研究中心是一个理想的研究所,多组学单,
细胞研究与免疫治疗的应用,提供尖端的研究设施和机会,
在丰富的跨学科环境中进一步发展职业生涯。K99/R 00奖将有助于
应对这些挑战,并为我提供高水平的培训,以启动我的独立科学生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YE ZHENG其他文献
YE ZHENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 12.01万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 12.01万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 12.01万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 12.01万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 12.01万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 12.01万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant