Targeting mechanosignaling in pediatric brain cancer
针对儿童脑癌的机械信号传导
基本信息
- 批准号:10571843
- 负责人:
- 金额:$ 32.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-14 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdherent CultureAdhesionsAdhesivesAffectAntineoplastic AgentsAreaBiological AssayBiological ProcessBiologyBrainBrain NeoplasmsCell Culture TechniquesCell Differentiation processCell ProliferationCell SurvivalCell physiologyCellsCerebellumChildhood Brain NeoplasmChildhood Malignant Brain TumorClinical TrialsCollagenCombined Modality TherapyCuesDataDevelopmentDrug ScreeningDrug TargetingEncapsulatedEnvironmentEquipmentExtracellular MatrixExtracellular Matrix ProteinsFDA approvedFoundationsFutureGrowth FactorHigh PrevalenceHumanHydrogelsInjectableLaboratoriesLibrariesLiquid substanceLuciferasesMalignant - descriptorMalignant Childhood NeoplasmMalignant NeoplasmsMalignant neoplasm of brainMatrix MetalloproteinasesMeasuresMediatorModelingMusNatural ProductsNeuronsOncogenicOutcome StudyPathway interactionsPeptidesPerformancePharmaceutical PreparationsPhenotypePhysiologyPolysaccharidesPrognosisPropertyProteinsProteoglycanQuality ControlResearchRoboticsSecond Primary CancersSignal PathwaySignal TransductionSolidSurvivorsTechnologyTestingTherapeuticThinnessTimeTissuesTranscriptional Coactivator with PDZ-Binding MotifTransgenic OrganismsVertebral columnWorkbiomarker discoverybiomaterial compatibilitycancer cellcell dimensioncell motilitydesigndrug developmentdrug discoveryeffective therapyefficacy testingexperienceexperimental studyhealinghigh standardhigh throughput screeninghydrogel scaffoldimprovedin vivoinnovationinterestmechanical propertiesmedulloblastomamethylomemonolayermortalitymouse modelneoplastic cellnew technologynew therapeutic targetpharmacologicprecision medicinepublic health relevancescaffoldscreeningself assemblysensorside effectsuccessthree dimensional cell culturetumortumor microenvironmenttwo-dimensional
项目摘要
Project Summary
Despite multimodal treatment, cancer-related mortality in pediatric brain cancers remains high and survivors
often suffer from serious, life-long, therapy-related side effects and secondary malignancies. There is a clear
need for more effective therapies, including for the most common malignant pediatric brain cancer medullo-
blastoma, a tumor that originates in the cerebellum. Mechanosensitive signaling pathways have emerged as
powerful targets in cancer drug discovery, including for the treatment of medulloblastoma. Yet, when targeting
signaling pathways that serve as sensors for a tumor cell's microenvironment, traditional monolayer cultures that
are most commonly used in cell-based high-throughput drug discovery, do not accurately recapitulate critical
environmental cues such as tissue stiffness or extracellular matrix composition. Drug discovery aimed at key
mediators of mechanosensitive signaling require cell-based screening assays in a cell culture environment that
more closely resembles in vivo tissue. Three-dimensional (3D) cell cultures have moved to the forefront in the
effort to create more in vivo-like experimental environments that can mimic intricate cell-cell and cell-extracellular
matrix interactions found in tissue. Our previous collaborative work demonstrated the suitability of the self-
assembling and hydrogelating MAX8 β-hairpin peptide as a 3D cell culture scaffold for automated high-
throughput drug discovery. We demonstrated that MAX8 combines biocompatibility and tunability in function and
stiffness with unique mechanical properties (e.g., shear-thinning, injectable solid with immediate rehealing) that
allow automatic handling with standard high-throughput screening (HTS) liquid handling equipment commonly
found in a drug discovery laboratory. The primary objective of this proposal is to use the versatile and tunable
MAX8 peptide to develop a 3D cell culture scaffold that mimics key features of brain extracellular matrix while
also retaining material properties critical for use with automated liquid handling equipment, all for a high-
throughput drug discovery approach targeting mechanosignaling. Aim 1 will establish a targeted assay for a well-
characterized mechanosensitive signaling pathway that is compatible with MAX8 peptide hydrogel scaffold-
based 3D cell cultures in a high throughput-compatible setup. Aim 2 will examine how tuning hydrogel stiffness
and peptide functionalization with brain extracellular matrix components affects assay performance and
phenotype of cerebellar neurons and pediatric brain cancer cells. Aim 3 will validate the newly developed assay
platform by performing a pilot drug screen and in vivo efficacy testing of candidate compounds. The outcome of
these studies will be a 3D cell culture platform that will provide fundamental understanding of how extracellular
matrix composition and tissue stiffness regulate mechanosignaling in both normal neurons and pediatric brain
cancer cells. Additionally, these studies will lay the foundation for a future high-throughput drug discovery
approach targeting mechanosignaling in scaffold-based 3D cultures optimized for pediatric brain tumors.
项目概要
尽管采用多模式治疗,儿童脑癌的癌症相关死亡率仍然很高,幸存者
经常患有严重的、终生的、与治疗相关的副作用和继发性恶性肿瘤。有一个明确的
需要更有效的治疗方法,包括最常见的恶性儿童脑髓质癌
母细胞瘤,一种起源于小脑的肿瘤。机械敏感信号通路已出现
癌症药物发现的强大目标,包括治疗髓母细胞瘤。然而,当瞄准
作为肿瘤细胞微环境传感器的信号通路,传统的单层培养物
最常用于基于细胞的高通量药物发现,不能准确概括关键
环境因素,例如组织硬度或细胞外基质成分。药物发现瞄准关键
机械敏感信号传导的介质需要在细胞培养环境中进行基于细胞的筛选测定,
更接近体内组织。三维(3D)细胞培养已走到了最前沿
努力创造更多类似体内的实验环境,可以模拟复杂的细胞与细胞和细胞与细胞外
组织中发现的基质相互作用。我们之前的合作工作证明了自我的适用性
组装和水凝胶化 MAX8 β-发夹肽作为 3D 细胞培养支架,用于自动化高
吞吐量药物发现。我们证明了 MAX8 结合了生物相容性和功能可调性
具有独特机械性能的刚度(例如,剪切稀化、可立即再愈合的可注射固体)
通常允许使用标准高通量筛选 (HTS) 液体处理设备进行自动处理
在药物发现实验室中发现的。该提案的主要目标是使用多功能且可调的
MAX8 肽开发 3D 细胞培养支架,模拟大脑细胞外基质的关键特征,同时
还保留了与自动化液体处理设备一起使用至关重要的材料特性,所有这些都是为了高
针对机械信号传导的高通量药物发现方法。目标 1 将建立一种针对良好
与 MAX8 肽水凝胶支架兼容的特征性机械敏感信号通路
基于高通量兼容设置的 3D 细胞培养。目标 2 将研究如何调整水凝胶硬度
脑细胞外基质成分的肽功能化会影响测定性能
小脑神经元和儿童脑癌细胞的表型。目标 3 将验证新开发的检测方法
平台通过对候选化合物进行试点药物筛选和体内功效测试。结果
这些研究将成为一个 3D 细胞培养平台,为细胞外细胞如何
基质组成和组织硬度调节正常神经元和儿童大脑的机械信号传导
癌细胞。此外,这些研究将为未来高通量药物发现奠定基础
针对儿科脑肿瘤优化的基于支架的 3D 培养物中的机械信号传导方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sigrid A Langhans其他文献
Sigrid A Langhans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sigrid A Langhans', 18)}}的其他基金
Targeting mechanosignaling in pediatric brain cancer
针对儿童脑癌的机械信号传导
- 批准号:
10446254 - 财政年份:2022
- 资助金额:
$ 32.35万 - 项目类别:
相似海外基金
Probe-type nanowire sensor for label-free, in-situ, ultrasensitive detection of biomarkers from single cell in adherent culture
探针型纳米线传感器,用于无标记、原位、超灵敏地检测贴壁培养中单细胞的生物标志物
- 批准号:
21K14653 - 财政年份:2021
- 资助金额:
$ 32.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Rolled Scaffold for High-Density Adherent Culture of Mammalian Cells
职业:用于哺乳动物细胞高密度贴壁培养的滚动支架
- 批准号:
1848251 - 财政年份:2019
- 资助金额:
$ 32.35万 - 项目类别:
Continuing Grant














{{item.name}}会员




