Early-Stage Clinical Trial of AI-Driven CBCT-Guided Adaptive Radiotherapy for Lung Cancer
AI驱动的CBCT引导的肺癌适应性放疗的早期临床试验
基本信息
- 批准号:10575081
- 负责人:
- 金额:$ 19.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AirAnatomyBronchial TreeCancer PatientChestClinicClinicalDataDatabasesDimensionsDoseDose LimitingEarly treatmentEquipmentGenerationsGoalsHeartImageImmobilizationLearningLinear Accelerator Radiotherapy SystemsLinkLungMalignant neoplasm of lungMethodologyMethodsModernizationModificationMotionNetwork-basedNon-Small-Cell Lung CarcinomaOrganOutcomePatient CarePatientsPatternPhase I Clinical TrialsPhysiciansPositioning AttributePrimary NeoplasmProcessRadiationRadiation OncologyRadiation therapyRelative RisksResearchResearch PersonnelResourcesRiskRoleScanningSecondary toSupervisionSystemTestingTimeTissuesToxic effectUncertaintyValidationVertebral columnX-Ray Computed Tomographyartificial intelligence methodautomated segmentationclinical riskcone-beam computed tomographyconvolutional neural networkcostdeep learningearly phase clinical trialeffective therapyfeasibility trialimaging Segmentationimprovedinterestlearning strategyloss of functionnovelparticipant enrollmentprimary endpointprospectivequantitative imagingsecondary outcomesimulationstandard of caresuccesstreatment durationtreatment planningtumor
项目摘要
PROJECT SUMMARY
Stereotactic body radiation therapy (SBRT) is a highly effective treatment for early-stage non-small cell lung
cancer, but its accuracy can be compromised by multiple factors. There is an interval between simulation and
the first day of treatment, the size and position of targets and organs at risk can shift over a course of
treatment, and the thorax is in constant multidimensional motion. Adaptive radiation can improve the accuracy
of SBRT, but implementing it within the workflow of a busy radiation oncology clinic currently requires re-
simulation and re-planning, costing valuable departmental time and resources. Cone beam computed
tomography (CBCT) scans are obtained daily prior to the delivery of each fraction, but their utility for adaptive
radiation therapy has been limited by their image quality. Processing time also remains a significant barrier for
real-time deep learning-based methodologies. The objective of our proposed research is therefore to develop,
validate, and test in an early clinical trial the feasibility of using our two-part cone-beam computed tomography-
based deep learning method for dose verification based on rapid and accurate generation of high quality
synthetic CTs and multi-organ segmentation. In this project, we will pursue two Specific Aims: 1) to develop
and refine CBCT-based synthetic CTs for CBCT quality improvement, and 2) to evaluate the clinical feasibility
of our synthetic CT-based dose verification. The early clinical trial will prospectively enroll patients with early-
stage non-small cell lung cancer receiving definitive SBRT. Validation of the feasibility of this method is a
necessary intermediate step towards our longer-term goal of the implementation of real-time lung cancer
adaptive radiation, which will allow for increased accuracy of higher dose to target volumes and lower doses to
organs at risk, thereby improving local control and decreasing radiation-related risks and toxicities for patients
with non-small cell lung cancer.
项目总结
立体定向全身放射治疗(SBRT)是治疗早期非小细胞肺癌的一种高效治疗方法
癌症,但其准确性可能会受到多种因素的影响。模拟和模拟之间有一段时间
在治疗的第一天,危险目标和器官的大小和位置可能会在一个疗程中发生变化
治疗后,胸腔处于恒定的多维运动中。自适应辐射可以提高精度
但在繁忙的放射肿瘤诊所的工作流程中实施它目前需要重新-
模拟和重新规划,耗费部门宝贵的时间和资源。计算的锥形梁
断层扫描(CBCT)是在每个碎片分娩前每天进行的,但它们对自适应的作用
放射治疗一直受到图像质量的限制。处理时间也仍然是一个重要的障碍
基于实时深度学习的方法。因此,我们提议的研究的目标是开发,
验证,并在早期临床试验中测试使用我们的两部分锥束计算机断层扫描的可行性-
基于快速准确生成高质量的剂量验证深度学习方法
合成CT和多器官分割。在这个项目中,我们将追求两个具体目标:1)开发
2)评价CBCT临床应用的可行性
我们基于合成CT的剂量验证。早期临床试验将前瞻性地招募早期-
接受确定的SBRT的分期非小细胞肺癌。对该方法的可行性进行了验证
朝着实施实时肺癌的较长期目标迈出必要的中间步骤
自适应辐射,这将使目标体积的高剂量和低剂量的准确性得到提高
处于危险状态的器官,从而改善局部控制,减少患者的辐射相关风险和毒性
患有非小细胞肺癌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aparna Kesarwala其他文献
Aparna Kesarwala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aparna Kesarwala', 18)}}的其他基金
Monitoring the interactions between cancer cell metabolism and radiation response
监测癌细胞代谢与放射反应之间的相互作用
- 批准号:
10001058 - 财政年份:2018
- 资助金额:
$ 19.56万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 19.56万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 19.56万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Studentship