Deciphering microbial contribution to androgen bioavailability in castration resistant prostate cancer patients
破译微生物对去势抵抗性前列腺癌患者雄激素生物利用度的贡献
基本信息
- 批准号:10573918
- 负责人:
- 金额:$ 20.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnabolismAndrogen MetabolismAndrogensBacteriaBacterial GenesBacteroidesBeta-glucuronidaseBile fluidBioinformaticsBiological AvailabilityBioreactorsCYP17A1 geneCancer EtiologyCancer PatientCastrate sensitive prostate cancerCessation of lifeClinicalClostridiumDevelopmentDiseaseEnzymesEvaluationFecesFoundationsFutureGenesGenomicsHumanHydrocortisoneInterdisciplinary StudyInterventionIntestinesKnowledgeLiverMALDI-TOF Mass SpectrometryMalignant NeoplasmsMalignant neoplasm of prostateMetabolic BiotransformationMusOperonOrchiectomyOrganismOutcomePatientsPlayPre-Clinical ModelPrevention strategyProductionPrognosisProstate Cancer therapyResearchResistanceResistance developmentRoleRouteRuminococcusScienceSerumShotgunsSourceSteroidsSystemTalentsTestingTestosteroneUnited StatesWorkabsorptionadvanced prostate cancerandrogen biosynthesisandrogen deprivation therapycancer diagnosiscastration resistant prostate cancercohortdeprivationdrug efficacydrug metabolismenzyme biosynthesisgut bacteriagut microbiomegut microbiotahuman maleinhibitorinnovationmenmetabolomicsmetagenomemicrobialmicrobial genomicsmicrobiomemicroorganismnovelnovel strategiespreventprostate cancer preventionprostate cancer progressiontestosterone biosynthesistreatment responsetreatment strategytumorvpr Geneswhole genome
项目摘要
PROJECT SUMMARY
An emerging role of microbiome in cancer is the capacity of microorganisms to impact treatment, drug efficacy
and metabolism. For example, we recently showed that the gut microbiome plays an important role in castration
resistant prostate cancer (CRPC) through microbial-derived androgen synthesis (Pernigoni et al. Science.
2021;374(6564):216-224). In that study, we found that androgen deprivation in both mice and humans promotes
the expansion of specific gut bacteria capable of converting testosterone precursors into active testosterone,
through bacterial CYP17A1-like enzymes (Ruminococcus gnavus, Ruminococcus sp. and Bacteroides
acidifaciens), thus increasing its levels in patients and mice with CRPC and preventing complete suppression of
testosterone during androgen deprivation therapy. In addition to the biosynthetic route, testosterone
bioavailability could represent an additional means to regulate therapeutic responses. Androgens are
glucuronidated in the liver for elimination and a fraction of these glucuronidated androgens reaches the gut
through the bile and are targeted by bacterial β-glucuronidases (GUS) (Ruminococcus gnavus, Ruminococcus
sp., Bacteroides acidifaciens and Clostridium scindens) for “reactivation” and potentially reabsorption. In fact,
androgen concentration is higher in the intestine than in serum of human males. Another route by which gut
microbiota contribute to the bioavailability of androgens is through cortisol to 11β-Hydroxyandrostenedione
conversion by bacterial steroid-17,20-desmolases (Clostridium scindens desABCD operon). In turn, 11β-
Hydroxyandrostenedione is converted to 11-oxyandrogen, which contribute to the tumor androgen pool. It is
unclear how much each of these different routes contribute to the pool of circulating androgens. Our central
hypothesis is that gut microbiome contributes to the production and bioavailability of androgens through a
combination of biosynthetic and bioavailability routes. The objective of this project is to computationally identify
androgen-related bacterial enzymes (CYP17A1-like, GUS, desA and desB) in CRPC patients gut microbiome
and to isolate bacterial species harboring those enzymes for functional analysis. The rationale for the proposed
research is that the outcomes will provide targets for future development and evaluation of interventions in CRPC
patients that minimize or prevent the bioavailability of androgens. Our hypothesis will be tested through two
specific aims: Aim 1) Identify androgen-related bacterial enzymes in the gut microbiome of prostate cancer
patients. Aim 2) Functional characterization of bacterial species possessing androgen-related enzymes. At
completion, this project will identify bacterial enzymes involved in androgen biotransformation and biosynthesis
and obtain bacterial species harboring these enzymes. This knowledge will serve as a springboard for future
functional studies using preclinical models of CRPC and inhibitors targeting bacterial androgen biotransformation
and synthesis enzymes and/or species that harbor them to alleviate CRPC, thus providing an innovative
approach to slow or prevent prostate cancer progression.
项目摘要
微生物组在癌症中的新作用是微生物影响治疗、药物疗效的能力
和新陈代谢。例如,我们最近表明,肠道微生物组在阉割中起着重要作用,
通过微生物来源的雄激素合成治疗耐药前列腺癌(CRPC)(Pernigoni等人,Science.
2021;374(6564):216-224)。在那项研究中,我们发现,在小鼠和人类中,雄激素剥夺都会促进
能够将睾酮前体转化为活性睾酮的特定肠道细菌的扩增,
通过细菌CYP 17 A1样酶(活泼瘤胃球菌、瘤胃球菌属和拟杆菌属
产酸杆菌),从而增加其在CRPC患者和小鼠中的水平,并防止CRPC的完全抑制。
雄激素剥夺治疗期间的睾酮水平。除了生物合成途径,睾酮
生物利用度可以代表调节治疗反应的附加手段。雄激素
葡萄糖醛酸化的雄激素在肝脏中消除,一部分到达肠道
通过胆汁,并被细菌β-葡萄糖醛酸酶(GUS)(活泼瘤胃球菌,瘤胃球菌
例如,产酸拟杆菌和产酸梭菌)用于“再活化”和潜在的重吸收。事实上,
男性肠内雄激素浓度高于血清。另一条肠道
微生物群有助于雄激素的生物利用度是通过皮质醇到11β-羟基雄烯二酮
通过细菌类固醇-17,20-碳链酶(Clostridium dendens desABCD操纵子)转化。11β-
羟基雄烯二酮转化为11-氧雄激素,这有助于肿瘤雄激素库。是
目前还不清楚这些不同途径中的每一种对循环雄激素库的贡献有多大。我们的中央
假设是肠道微生物组通过一种代谢途径促进雄激素的产生和生物利用度。
生物合成和生物利用度途径的组合。本项目的目标是通过计算确定
CRPC患者肠道微生物组中的雄激素相关细菌酶(CYP 17 A1样、GUS、德萨和desB)
并分离携带这些酶的细菌物种用于功能分析。建议的理由
研究结果将为CRPC干预措施的未来发展和评估提供目标
最小化或阻止雄激素生物利用度的患者。我们的假设将通过两个
具体目的:目的1)识别前列腺癌肠道微生物组中的雄激素相关细菌酶
患者目的2)研究具有雄激素相关酶的细菌的功能。在
完成后,该项目将确定参与雄激素生物转化和生物合成的细菌酶
并获得携带这些酶的细菌物种。这一知识将作为今后工作的跳板。
使用CRPC的临床前模型和靶向细菌雄激素生物转化的抑制剂进行的功能研究
和合成酶和/或包含它们的物质以减轻CRPC,从而提供了一种创新的
前列腺癌的治疗方法有哪些
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raad Gharaibeh其他文献
Raad Gharaibeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 20.79万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 20.79万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 20.79万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 20.79万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 20.79万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 20.79万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 20.79万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 20.79万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 20.79万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 20.79万 - 项目类别:
Discovery Early Career Researcher Award