Subcellular Origins of Extensive Spatial Integration by Ganglion Cell Photoreceptors
神经节细胞感光器广泛空间整合的亚细胞起源
基本信息
- 批准号:10574483
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAfferent NeuronsAreaAxonBehaviorBiophysical ProcessBrainCellsCircadian RhythmsClosure by clampCompensationComplementConeDataDendritesDistalElectrophysiology (science)ExhibitsEyeFire - disastersGoalsHumanImageInvestigationKnowledgeLabelLasersLengthLightLightingMacacaMammalsMeasuresMediatingMethodsMiosis disorderMoodsMusNeuronsOptic DiskOutputPatch-Clamp TechniquesPatternPerceptionPerforationPeripheralPhotonsPhotophobiaPhotoreceptorsPhotosensitivityPhototransductionPhysiologyPopulationPreparationPreservation TechniquePresynaptic TerminalsPropertyProteinsProtocols documentationPsychophysicsPublishingPupilReflex actionRegulationRetinaRetinal Ganglion CellsRodShapesSignal TransductionSiteSleepSliceStimulusSubconsciousSupporting CellSurfaceTestingTherapeuticVariantVisionVisualVisual Pathwaysbiophysical analysiscircadian pacemakercircadian regulationconstrictiondesensitizationexperimental studyganglion cellinsightlight effectslight intensitymelanopsinneuronal cell bodyoptical discpatch clamppreservationreceptorresponsespatial integrationtransmission processtwo-photonvoltage clamp
项目摘要
PROJECT SUMMARY/ABSTRACT
When faced with a visual scene, the brain encodes both image detail and the scene’s overall intensity,
measured as irradiance. Encoding irradiance is critical for circadian regulation, pupil constriction, and image
vision, among other important functions. A canonical feature of irradiance encoding is the blurring of image
detail in favor of extensive spatial integration of light. The cells in the retina that transmit irradiance information
to the brain are the intrinsically photosensitive retinal ganglion cells (ipRGCs). My goal is to understand how
the mechanisms of phototransduction in the ipRGCs support this spatial integration. Melanopsin, the light-
sensitive protein in ipRGCs, is distributed throughout the dendrites, soma, and axon. IpRGCs send irradiance
information to the brain using spikes and phototransduction within the axon is likely to shape spike output.
Preliminary experiments indicate that ipRGC axons are indeed photosensitive. In mice, melanopsin
immunostaining labels axons, including at the optic disk. In electrophysiological recordings of mouse ipRGCs,
illumination of the axon evokes spiking responses, and the cells are more sensitive to large stimuli that
illuminate their axons in addition to their somas and dendrites. I hypothesize that phototransduction in the axon
enables the spatial integration of light over an unexpectedly large area. The lab has established protocols for
electrophysiological recordings from the soma and axon of ipRGCs, and for imaging visually-evoked Ca2+
dynamics in the population of ipRGC axon terminals. I propose an investigation into mechanisms of axonal
photosensitivity (Aim 1) and the axonal contribution to spatial integration at the level of the cell population (Aim
2). To complement my investigations in the mouse, I will also measure the properties of ipRGCs in a species
that has larger eyes and thus longer axons. My proposed experiments will provide an understanding of how
signal transduction operates in distinct cellular compartments of a sensory neuron to support spatial
integration.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Franklin Caval-Holme其他文献
Franklin Caval-Holme的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Franklin Caval-Holme', 18)}}的其他基金
Subcellular Origins of Extensive Spatial Integration by Ganglion Cell Photoreceptors
神经节细胞感光器广泛空间整合的亚细胞起源
- 批准号:
10389755 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Dissecting a microcircuit that regulates the earliest light responses in the retina
解剖调节视网膜最早光反应的微电路
- 批准号:
9755444 - 财政年份:2017
- 资助金额:
$ 6.95万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 6.95万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 6.95万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 6.95万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 6.95万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 6.95万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 6.95万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 6.95万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 6.95万 - 项目类别:
Discovery Grants Program - Individual