Understanding the Neural Mechanisms Controlling Brain-wide Dynamics

了解控制全脑动态的神经机制

基本信息

  • 批准号:
    10577891
  • 负责人:
  • 金额:
    $ 44.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Behavior emerges from the flow of information between brain regions. For example, finding a friend in a crowd requires the interaction of brain regions performing sensory processing, memory processing, and motor responses. Disrupting how neural activity flows through the brain is thought to lead to deficits in several neuropsychiatric and neurological disorders, including schizophrenia and autism spectrum disorder. However, the neural mechanisms controlling the flow of information through the brain are not well understood. To capture how information flows through the brain, we recently used mesoscale calcium imaging to record the dynamics of neural activity across the dorsal cortex of mice. Surprisingly, we found cortex-wide neural dynamics could be captured in 14 unique spatiotemporal patterns of neural activity. These ‘motifs’ of activity occurred repeatedly, were common to all mice, and were associated with specific behaviors. Importantly, identifying these motifs allows us to quantify how neural activity is flowing across cortex. Here, we will leverage this ability to understand the neural mechanisms that control the expression of different motifs and, thus, control the flow of neural activity across the brain. Our Aims will address three key components of control: First, information must be routed between brain regions. Activity from a brain region can flow to several possible downstream regions (to support different behaviors). Using mesoscale calcium imaging, we will quantify how activity is routed through the brain at each moment in time. Simultaneous electrophysiology and optogenetics will then test two prominent hypotheses that predict activity is routed differently depending on 1) how information is represented in the population of neurons and 2) the frequency of synchronous oscillations. Second, the brain must be able to control how neural activity flows through cortex. Prefrontal cortex and the basal ganglia are two regions thought to provide such control. However, their role in guiding cortex-wide neural dynamics has never been directly tested. Therefore, our second aim will combine mesoscale imaging, electrophysiology, and optogenetics to test whether neurons in prefrontal cortex or basal ganglia control the expression of different motifs and, thus, control how neural activity flows through the brain. Third, in order to learn a new behavior, one must learn the pattern of neural activity that supports that behavior. Neuromodulation is thought to be critical for such learning: current models propose norepinephrine explores new patterns while dopamine refines patterns. To test this, our third aim will combine mesoscale imaging with recording and stimulation of noradrenergic/dopaminergic midbrain neurons while animals learn new behaviors. In this way, we aim to understand how neuromodulation changes behavior and cortex-wide neural dynamics. Our innovative combination of mesoscale imaging, electrophysiology, and optogenetics will provide insight into how neural activity is routed (Aim 1) and how cortex-wide dynamics are controlled (Aim 2) and learned (Aim 3). By understanding these mechanisms, we hope to improve treatments for diseases disrupting cognitive control.
项目摘要/摘要 行为产生于大脑区域之间的信息流。例如,在人群中寻找朋友 需要执行感觉处理、记忆处理和运动的大脑区域的相互作用 回应。扰乱神经活动通过大脑的方式被认为会导致几个方面的缺陷 神经精神和神经障碍,包括精神分裂症和自闭症谱系障碍。然而, 控制信息通过大脑流动的神经机制还没有被很好地理解。 为了捕捉信息如何通过大脑流动,我们最近使用中尺度钙成像来记录 小鼠背侧皮质的神经活动动力学。令人惊讶的是,我们发现了大脑皮层的神经 动力学可以在14种独特的神经活动时空模式中捕捉到。这些活动的“主题” 反复发生,对所有小鼠来说都是常见的,并与特定的行为有关。重要的是 识别这些模体可以让我们量化神经活动是如何在大脑皮层流动的。在这里,我们将利用 这种理解控制不同基序表达的神经机制的能力,因此, 控制神经活动在大脑中的流动。我们的目标将涉及控制的三个关键组成部分: 首先,信息必须在大脑区域之间传递。大脑区域的活动可以流向几个 可能的下游区域(以支持不同的行为)。使用中尺度钙成像,我们将 量化每个时刻的大脑活动是如何传递的。同步电生理学和 然后,光遗传学将测试两个重要的假说,这两个假说预测活动的路径取决于1) 信息是如何在神经元群体中表示的,以及2)同步振荡的频率。 其次,大脑必须能够控制神经活动如何通过大脑皮层。前额叶皮质和 基底节是两个被认为提供这种控制的区域。然而,它们在引导全皮质神经的作用 动力学从未被直接测试过。因此,我们的第二个目标将结合中尺度成像, 电生理学和光遗传学,以测试前额叶皮质或基底节的神经元是否控制 不同基序的表达,从而控制神经活动如何流经大脑。 第三,为了学习一种新的行为,一个人必须学习支持该行为的神经活动模式。 神经调节被认为是这种学习的关键:目前的模型提出去甲肾上腺素的研究 新的模式,而多巴胺提炼模式。为了测试这一点,我们的第三个目标将结合中尺度成像和 当动物学习新的行为时,记录和刺激去甲肾上腺素能/多巴胺能中脑神经元。 通过这种方式,我们的目标是了解神经调节如何改变行为和整个皮质的神经动力学。 我们的中尺度成像、电生理学和光遗传学的创新组合将提供对 神经活动是如何传递的(目标1),以及整个大脑皮层的动态如何被控制(目标2)和学习(目标3)。 通过了解这些机制,我们希望改进对干扰认知控制的疾病的治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy J. Buschman其他文献

Timothy J. Buschman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy J. Buschman', 18)}}的其他基金

Neural Mechanisms of Rule-Based Behavior
基于规则的行为的神经机制
  • 批准号:
    10580819
  • 财政年份:
    2022
  • 资助金额:
    $ 44.64万
  • 项目类别:
Understanding the Neural Mechanisms Controlling Brain-wide Dynamics
了解控制全脑动态的神经机制
  • 批准号:
    10366350
  • 财政年份:
    2022
  • 资助金额:
    $ 44.64万
  • 项目类别:
Understanding the Network Mechanisms that Control Working Memory
了解控制工作记忆的网络机制
  • 批准号:
    10433937
  • 财政年份:
    2019
  • 资助金额:
    $ 44.64万
  • 项目类别:
Understanding the Network Mechanisms that Control Working Memory
了解控制工作记忆的网络机制
  • 批准号:
    10005468
  • 财政年份:
    2019
  • 资助金额:
    $ 44.64万
  • 项目类别:
Developing an Adaptive Cognitive Prosthetic to Replace Damaged Brain Regions
开发自适应认知假体来替代受损的大脑区域
  • 批准号:
    8755948
  • 财政年份:
    2014
  • 资助金额:
    $ 44.64万
  • 项目类别:
Controlling Interareal Gamma Coherence by Optogenetics, Pharmacology and Behavior
通过光遗传学、药理学和行为控制区域间伽玛相干性
  • 批准号:
    8708970
  • 财政年份:
    2013
  • 资助金额:
    $ 44.64万
  • 项目类别:
Controlling Interareal Gamma Coherence by Optogenetics, Pharmacology and Behavior
通过光遗传学、药理学和行为控制区域间伽马相干性
  • 批准号:
    8661826
  • 财政年份:
    2013
  • 资助金额:
    $ 44.64万
  • 项目类别:
Controlling Interareal Gamma Coherence by Optogenetics, Pharmacology and Behavior
通过光遗传学、药理学和行为控制区域间伽玛相干性
  • 批准号:
    8208975
  • 财政年份:
    2011
  • 资助金额:
    $ 44.64万
  • 项目类别:
Controlling Interareal Gamma Coherence by Optogenetics, Pharmacology and Behavior
通过光遗传学、药理学和行为控制区域间伽玛相干性
  • 批准号:
    8027978
  • 财政年份:
    2011
  • 资助金额:
    $ 44.64万
  • 项目类别:

相似海外基金

Deconstructing the roles of basal ganglia and cerebellum-related thalamic inputs to motor cortex during control of dexterous behavior
解构基底神经节和小脑相关丘脑输入在控制灵巧行为过程中对运动皮层的作用
  • 批准号:
    10546492
  • 财政年份:
    2022
  • 资助金额:
    $ 44.64万
  • 项目类别:
Deconstructing the roles of basal ganglia and cerebellum-related thalamic inputs to motor cortex during control of dexterous behavior
解构基底神经节和小脑相关丘脑输入在控制灵巧行为过程中对运动皮层的作用
  • 批准号:
    10366236
  • 财政年份:
    2022
  • 资助金额:
    $ 44.64万
  • 项目类别:
The effects of parkinsonism and deep brain stimulation on basal ganglia-thalamocortical circuitry during sleep-wake behavior
帕金森症和深部脑刺激对睡眠-觉醒行为期间基底节-丘脑皮质回路的影响
  • 批准号:
    10374059
  • 财政年份:
    2019
  • 资助金额:
    $ 44.64万
  • 项目类别:
The effects of parkinsonism and deep brain stimulation on basal ganglia-thalamocortical circuitry during sleep-wake behavior
帕金森症和深部脑刺激对睡眠-觉醒行为期间基底节-丘脑皮质回路的影响
  • 批准号:
    10601010
  • 财政年份:
    2019
  • 资助金额:
    $ 44.64万
  • 项目类别:
Neural basis of direct and indirect pathways in the basal ganglia involved in the control of motor expression and goal-directed behavior.
基底神经节中参与运动表达和目标导向行为控制的直接和间接通路的神经基础。
  • 批准号:
    19K16300
  • 财政年份:
    2019
  • 资助金额:
    $ 44.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Role of Opponent Basal Ganglia Outputs in Behavior
对手基底神经节输出在行为中的作用
  • 批准号:
    10063566
  • 财政年份:
    2017
  • 资助金额:
    $ 44.64万
  • 项目类别:
The Role of Opponent Basal Ganglia Outputs in Behavior
对手基底神经节输出在行为中的作用
  • 批准号:
    10531242
  • 财政年份:
    2017
  • 资助金额:
    $ 44.64万
  • 项目类别:
The Role of Opponent Basal Ganglia Outputs in Behavior
对手基底神经节输出在行为中的作用
  • 批准号:
    10367065
  • 财政年份:
    2017
  • 资助金额:
    $ 44.64万
  • 项目类别:
Basal Ganglia Activity Timing Underlying Habitual Behavior
习惯行为背后的基底神经节活动时间
  • 批准号:
    1557987
  • 财政年份:
    2016
  • 资助金额:
    $ 44.64万
  • 项目类别:
    Continuing Grant
Basal ganglia circuit mechanisms in cognitive behavior and neuropsychiatric pathology
认知行为和神经精神病理学中的基底神经节回路机制
  • 批准号:
    15H04275
  • 财政年份:
    2015
  • 资助金额:
    $ 44.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了