Neural Mechanisms of Rule-Based Behavior
基于规则的行为的神经机制
基本信息
- 批准号:10580819
- 负责人:
- 金额:$ 43.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnimalsAreaBasal GangliaBayesian ModelingBehaviorBehavioralBehavioral ParadigmBeliefBrainChronicCognition DisordersCognitiveCognitive deficitsColorComplexComputer ModelsCorpus striatum structureDementiaDetectionDiseaseEarly InterventionEatingElectric StimulationElectrodesElectrophysiology (science)EvolutionFeedbackFoundationsFunctional Magnetic Resonance ImagingKnowledgeLearningMaintenanceMapsMeasuresMental HealthMental disordersModelingMonkeysMotorNatureNeurodegenerative DisordersNeuronsObsessive-Compulsive DisorderParietal LobePathologicPatternPhysiologicalPositioning AttributePrefrontal CortexResearchRestaurantsRewardsRoleSaccadesSchizophreniaSensoryShapesShort-Term MemoryStimulusStructureTechniquesTestingTrainingUpdateWorkattentional controlautism spectrum disordercognitive controleconomic costexperienceexperimental studyflexibilityimprovedinsightneuralneuromechanismneuropsychiatric disordernovelnovel diagnosticspredictive modelingresponsesensory inputsensory stimulussocialtheories
项目摘要
PROJECT SUMMARY/ABSTRACT
Over our lifetime, we learn hundreds of ‘rules’ that define how we should act in a given situation. For example,
when in a restaurant, we follow a set of rules that guide the way we order, eat, and pay for a meal. By learning
and using rules, we can optimize our behavior and maximize social and physical rewards. Disrupting one’s ability
to learn and follow rules can be pathological. Such disruptions are associated with many neuropsychiatric and
neurodegenerative disorders, such as schizophrenia and dementia, where they carry high social and economic
costs. To develop novel, mechanistically-informed, treatments for these diseases, we must first develop a
detailed understanding of the neural mechanisms that support rules.
Here, we aim to understand how the brain flexibly learns, follows, and switches between several different rules.
Combining large-scale, multi-region electrophysiology with novel behavioral paradigms in monkeys, we will study
two aspects of flexible rule-based behavior:
First, one must be able to discover which rule to follow in a new situation. This requires integrating information
from the world to decide which rule, from a set of known rules, is the correct one for the situation. Our first aim
will leverage our large-scale recording techniques to distinguish hypotheses about the relative role of prefrontal
cortex, parietal cortex, and basal ganglia in integrating feedback and deciding which rule to follow.
Second, we aim to understand how multiple rules are learned, represented, and executed. Specifically, we will
test hypotheses that the representation of rules is structured: computationally similar rules use similar neural
mechanisms. Such structure is theorized to allow us to rapidly learn new rules in new situations. To this end,
monkeys will learn and perform multiple, computationally-related, rules. In our second aim, we will use a
combination of chronic and acute electrophysiology to track the neural representation of a rule through
learning. This will distinguish hypotheses about how the neural representation of a rule is structured, and how it
relates to other, similar, rules. In parallel, our third aim will use the same recordings to understand how rules
act on stimulus representations to transform them into rule-appropriate responses. We will test three theories
of cognitive control, including a novel dynamic model that hypothesizes rules act by dynamically transforming
neural representations between subspaces of neural activity.
While our proposed research is basic in nature, we believe it is an important first step in a mechanistic
understanding of the core cognitive deficits of several mental illnesses, including schizophrenia. We believe
this understanding will improve mental health by leading to new diagnostics and treatments for cognitive
disorders. In particular, we hope to use our results to develop physiological markers that will improve detection,
allow for earlier intervention, and guide targeted treatments.
项目总结/摘要
在我们的一生中,我们学习了数百条“规则”,这些规则定义了我们在特定情况下应该如何行动。比如说,
在餐馆里,我们遵循一套规则,指导我们如何点菜,吃饭和付款。通过学习
使用规则,我们可以优化我们的行为,最大化社会和物质回报。扰乱某人的能力
学习和遵守规则是病态的这种破坏与许多神经精神和
神经退行性疾病,如精神分裂症和痴呆症,在那里他们携带高社会和经济
成本为了开发针对这些疾病的新的、机械信息的治疗方法,我们必须首先开发一种
详细了解支持规则的神经机制。
在这里,我们的目标是了解大脑如何灵活地学习,遵循和在几种不同的规则之间切换。
结合大规模的,多区域的电生理学与猴子的新行为范式,我们将研究
灵活的基于规则的行为的两个方面:
首先,必须能够发现在新的情况下应该遵循哪条规则。这就需要整合信息
从一系列已知的规则中,决定哪一条规则是正确的。我们的首要目标
将利用我们的大规模记录技术来区分有关前额叶相对作用的假设,
大脑皮层、顶叶皮层和基底神经节在整合反馈和决定遵循哪条规则方面发挥着重要作用。
其次,我们的目标是了解多个规则是如何学习,表示和执行的。具体来说,我们将
测试假设规则的表示是结构化的:计算上相似的规则使用相似的神经网络
机制等这种结构的理论化使我们能够在新的情况下快速学习新的规则。为此目的,
猴子会学习并执行多种与计算相关的规则。在我们的第二个目标中,我们将使用
慢性和急性电生理学的组合来跟踪规则的神经表征,
学习这将区分关于规则的神经表征是如何结构化的假设,以及它是如何
与其他类似的规则有关。与此同时,我们的第三个目标将使用相同的记录来了解规则是如何产生的。
对刺激表征采取行动,将其转化为符合规则的反应。我们将检验三种理论
认知控制,包括一个新的动态模型,假设规则通过动态转换
神经活动的子空间之间的神经表征。
虽然我们提出的研究本质上是基础性的,但我们相信这是机械的重要的第一步。
了解包括精神分裂症在内的几种精神疾病的核心认知缺陷。我们认为
这种理解将通过导致认知障碍的新诊断和治疗来改善心理健康。
紊乱特别是,我们希望利用我们的研究结果来开发生理标记,以提高检测,
允许早期干预,并指导有针对性的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy J. Buschman其他文献
Timothy J. Buschman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy J. Buschman', 18)}}的其他基金
Understanding the Neural Mechanisms Controlling Brain-wide Dynamics
了解控制全脑动态的神经机制
- 批准号:
10577891 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Understanding the Neural Mechanisms Controlling Brain-wide Dynamics
了解控制全脑动态的神经机制
- 批准号:
10366350 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Understanding the Network Mechanisms that Control Working Memory
了解控制工作记忆的网络机制
- 批准号:
10433937 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
Understanding the Network Mechanisms that Control Working Memory
了解控制工作记忆的网络机制
- 批准号:
10005468 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
Developing an Adaptive Cognitive Prosthetic to Replace Damaged Brain Regions
开发自适应认知假体来替代受损的大脑区域
- 批准号:
8755948 - 财政年份:2014
- 资助金额:
$ 43.7万 - 项目类别:
Controlling Interareal Gamma Coherence by Optogenetics, Pharmacology and Behavior
通过光遗传学、药理学和行为控制区域间伽玛相干性
- 批准号:
8708970 - 财政年份:2013
- 资助金额:
$ 43.7万 - 项目类别:
Controlling Interareal Gamma Coherence by Optogenetics, Pharmacology and Behavior
通过光遗传学、药理学和行为控制区域间伽马相干性
- 批准号:
8661826 - 财政年份:2013
- 资助金额:
$ 43.7万 - 项目类别:
Controlling Interareal Gamma Coherence by Optogenetics, Pharmacology and Behavior
通过光遗传学、药理学和行为控制区域间伽玛相干性
- 批准号:
8208975 - 财政年份:2011
- 资助金额:
$ 43.7万 - 项目类别:
Controlling Interareal Gamma Coherence by Optogenetics, Pharmacology and Behavior
通过光遗传学、药理学和行为控制区域间伽玛相干性
- 批准号:
8027978 - 财政年份:2011
- 资助金额:
$ 43.7万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 43.7万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 43.7万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 43.7万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 43.7万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 43.7万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 43.7万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 43.7万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 43.7万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




