3D Fourier Imaging System for High Throughput Analyses of Cancer Organoids
用于癌症类器官高通量分析的 3D 傅里叶成像系统
基本信息
- 批准号:10577796
- 负责人:
- 金额:$ 19.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccountingAdoptedAlgorithmsAntineoplastic AgentsAntitumor Drug Screening AssaysApoptoticBedsBrightfield MicroscopyCellsCellularityClassificationClinicalCodeColorComputer softwareDataData SetDetectionDrug resistanceDrug usageEnvironmentEpitheliumExtracellular MatrixGoalsHeterogeneityImageIndividualInfusion proceduresLateralLightLightingMachine LearningMalignant NeoplasmsMechanicsMesenchymalMethodsMicrofluidicsMicroscopeMicroscopyModelingMolecularMonitorOpticsOrganoidsOutcomePatientsPharmaceutical PreparationsPharmacotherapyPhenotypePhysiologicalPositioning AttributeProliferatingRadiationResearch PersonnelResistanceResolutionScanningSourceSpecimenSpeedStimulusStructureSystemSystems DevelopmentTechniquesTestingTrainingTreatment outcomeVisualadvanced analyticsanticancer researchcancer imagingcellular imagingchemotherapycomputational pipelinescomputerized data processingdata acquisitiondeep learningdeep learning algorithmdesigndrug developmentdrug resistance developmentempowermentexperimental studyfeature extractionhigh resolution imaginghigh throughput analysisimaging platformimaging systemimprovedin vivoinnovationmetermicroscopic imagingmultidimensional datapredicting responseprospectivereconstructionresistance mechanismresponseself organizationsingle cell analysisstatisticstemozolomidethree dimensional cell culturetomographytooltraittumortumor heterogeneity
项目摘要
Challenges. Tumor spheroids (and organoids) have become an instrumental tool in cancer research. These
self-organized, three-dimensional (3D) systems can recapitulate phenotypic and functional traits of patient
tumors in vivo, thereby serving as a powerful testing bed to study tumor heterogeneity, interactions with the
environment (e.g., extracellular matrix), and responses to external stimuli (e.g., chemotherapy, radiation). Fully
harnessing spheroids' utility, however, is stymied by lack of high-throughput analysis methods. Conventional
bright-field microscopy, although widely used to monitor spheroids in culture, fails to capture detailed cellular
organizations; advanced fluorescent microscopy can resolve individual cells, but its imaging throughput is
restricted by the small field-of-view (FOV) and the scanning mechanisms involved. Innovations. We aim to
advance a new volumetric imaging microscope (VIM) for single cell analyses in tumor spheroids. Specifically,
we will explore integrating Fourier ptychographic microscopy (FPM) with diffraction tomography. FPM is based
on a spatially coded-illumination technique, collecting low resolution image sequences while changing the
position of a point-light source. These images are then numerically combined in the Fourier space, which
allows FPM to achieve both wide field-of-view and high spatial resolution in 2D images. We reason that full 3D
microscopic images can be recovered by accounting for optical diffraction during the numerical reconstruction.
Approaches. Aim 1. System development. We will build a VIM system featuring: i) a new numerical algorithm
to reconstruct 3D volumetric images; ii) a new light-illumination strategy to speed up the data acquisition; iii)
microfluidic cartridges optimized for spheroid culture and drug treatment; and iv) multicolor imaging capacity for
molecular detection. The complete VIM will resolve individual cells constituting a spheroid at high resolution
(lateral, 0.4 µm; axial, 1 µm) in a large imaging volume. Aim 2. Treatment monitoring with tumor spheroids. We
will test VIM's practical utility: VIM-enabled spheroid imaging will reveal earlier than bulk imaging whether a
spheroid is responsive or resistance to drug treatment. To generate a tumor model, we will use primary GBM
cells from patients. GBM spheroids will be grown and treated with drug (temozolomide) inside microfluidic
cartridges. We will use the VIM to monitor how single cells change their phenotypes under treatment, and
correlate these changes with treatment outcomes. Impact. The VIM will be a transformative tool for cancer
research, empowering researchers with rich data sets and substantially advanced analytics. Immediate
applications include better monitoring of anticancer drug responses in 3D cell culture, analyzing cellular
heterogeneity, and prospectively detecting cellular fate under various physiological conditions. These
outcomes will strengthen the clinical and scientific utility of tumor spheroids in cancer research.
挑战肿瘤球状体(和类器官)已成为癌症研究中的工具。这些
自组织的三维(3D)系统可以概括患者的表型和功能特征
肿瘤在体内,从而作为一个强大的测试床,研究肿瘤异质性,相互作用,
环境(例如,细胞外基质),以及对外部刺激的反应(例如,化疗、放疗)。充分
然而,由于缺乏高通量分析方法,利用球体的效用受到阻碍。常规
明场显微镜虽然广泛用于监测培养物中的球状体,
先进的荧光显微镜可以分辨单个细胞,但其成像吞吐量
受限于小视场(FOV)和所涉及的扫描机制。创新。我们的目标是
提出了一种新的体积成像显微镜(Vim),用于肿瘤球体中的单细胞分析。具体来说,
我们将探讨整合傅立叶重叠关联显微镜(FPM)与衍射层析成像。FPM基于
在空间编码照明技术上,收集低分辨率图像序列,同时改变
点光源的位置。然后,这些图像在傅立叶空间中进行数字组合,
允许FPM在2D图像中实现宽视场和高空间分辨率。我们认为全3D
通过在数值重建期间考虑光学衍射,可以恢复显微图像。
接近。目标1.系统开发。我们将建立一个Vim系统,其特点是:i)一个新的数值算法
重建3D体积图像; ii)一种新的光照明策略,以加快数据采集; iii)
优化用于球状体培养和药物治疗的微荧光素盒;和iv)用于以下的荧光素成像能力:
分子检测完整的Vim将以高分辨率分辨构成球体的单个细胞
(横向,0.4 µm;轴向,1 µm)。目标二。肿瘤球体的治疗监测。我们
将测试Vim的实际效用:启用VIM的球体成像将比批量成像更早地揭示
球状体对药物治疗有反应或有抗性。为了生成肿瘤模型,我们将使用原发性GBM
患者的细胞。GBM球状体将在微囊内生长并用药物(替莫唑胺)处理
子弹。我们将使用Vim来监测单细胞在治疗下如何改变其表型,
将这些变化与治疗结果联系起来。冲击Vim将成为癌症的变革工具
研究,为研究人员提供丰富的数据集和先进的分析。立即
应用包括在3D细胞培养中更好地监测抗癌药物反应,分析细胞
异质性,并在各种生理条件下前瞻性地检测细胞命运。这些
研究结果将加强肿瘤球体在癌症研究中的临床和科学效用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hakho Lee其他文献
Hakho Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hakho Lee', 18)}}的其他基金
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
- 批准号:
10659397 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
3D Fourier Imaging System for High Throughput Analyses of Cancer Organoids
用于癌症类器官高通量分析的 3D 傅里叶成像系统
- 批准号:
10358186 - 财政年份:2022
- 资助金额:
$ 19.24万 - 项目类别:
High-throughput Integrated Magneto-electrochemical Exosome (HiMEX) platform to identify neurodevelopmental markers associated with pre and postnatal oxycodone exposure
高通量集成磁电化学外泌体 (HiMEX) 平台,用于识别与产前和产后羟考酮暴露相关的神经发育标志物
- 批准号:
10017043 - 财政年份:2019
- 资助金额:
$ 19.24万 - 项目类别:
Clinical platform for high-throughput analyses of extracellular vesicles
细胞外囊泡高通量分析的临床平台
- 批准号:
10462501 - 财政年份:2018
- 资助金额:
$ 19.24万 - 项目类别:
Clinical platform for high-throughput analyses of extracellular vesicles
细胞外囊泡高通量分析的临床平台
- 批准号:
9754806 - 财政年份:2018
- 资助金额:
$ 19.24万 - 项目类别:
Clinical platform for high-throughput analyses of extracellular vesicles
细胞外囊泡高通量分析的临床平台
- 批准号:
10224771 - 财政年份:2018
- 资助金额:
$ 19.24万 - 项目类别:
Clinical platform for high-throughput analyses of extracellular vesicles
细胞外囊泡高通量分析的临床平台
- 批准号:
9906460 - 财政年份:2018
- 资助金额:
$ 19.24万 - 项目类别:
Multiplexed exosome analyses with DNA barcoding
使用 DNA 条形码进行多重外泌体分析
- 批准号:
9266748 - 财政年份:2016
- 资助金额:
$ 19.24万 - 项目类别:
Multiplexed exosome analyses with DNA barcoding
使用 DNA 条形码进行多重外泌体分析
- 批准号:
9099367 - 财政年份:2016
- 资助金额:
$ 19.24万 - 项目类别:
MAGNETIC NANOSENSORS FOR BIOMEDICAL ANALYSES OF MICROVESICLES
用于微泡生物医学分析的磁性纳米传感器
- 批准号:
8458935 - 财政年份:2012
- 资助金额:
$ 19.24万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:














{{item.name}}会员




