Aligned and electrically conductive collagen scaffolds for guiding innervated muscle-tendon junction repair of volumetric muscle loss injuries
对齐且导电的胶原蛋白支架,用于引导神经支配的肌肉肌腱连接修复体积性肌肉损失损伤
基本信息
- 批准号:10578786
- 负责人:
- 金额:$ 42.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAblationAddressAnimalsAntibodiesBiocompatible MaterialsBiologicalBiomechanicsBiomimeticsBioreactorsCell MaturationCell SurvivalCellsCholinergic ReceptorsCicatrixClinicalCoculture TechniquesCollagenComplexConfocal MicroscopyConnective TissueCuesCytoskeletal ModelingDefectDenervationDermisDevelopmentElectric ConductivityElectric StimulationEngineeringExtracellular MatrixFibrosisFunctional RegenerationGaitGenerationsGlycosaminoglycansHistologicImageImmunohistochemistryImplantIn VitroInjuryLocomotionMeasurementMeasuresMechanical StimulationMechanicsModelingMovementMuscleMuscle FibersMuscle functionMuscle satellite cellMuscular AtrophyMyosin Heavy ChainsNatural regenerationNerveNerve TissueNervous System TraumaNeuromuscular JunctionNeuronal DifferentiationNeuronsOperative Surgical ProceduresPatientsPeripheral NervesPeripheral Nervous SystemProcessProliferatingRattusRecovery of FunctionRepair ComplexSignal TransductionSkeletal MuscleSkeletal muscle injurySkeletal systemStructureTechnologyTendon structureTestingTherapeuticTissue EngineeringTissuesTraumaVascularizationWorkbeta Tubulinbiophysical propertiesclinically relevantcollagen scaffoldconditioningdesignelectrical potentialexperiencefunctional improvementgait examinationimmunocytochemistryimprovedin vivoinnovationmilitary patientmuscle regenerationmyogenesisneglectnerve stem cellnerve supplyosteochondral tissuepatient populationpreconditioningrepair strategyrepairedrestorationscaffoldstem cell differentiationsuccesstibialis anterior muscletissue regenerationtissue repairtransmission processvolumetric muscle loss
项目摘要
ABSTRACT
Volumetric muscle loss (VML) injuries are debilitating traumas that result in permanent loss of muscle function.
Moreover, VML injuries are often compounded by damage to multiple tissues including connective and nervous
tissue. Peripheral nervous system damage can result in denervation that limits force generation while the
disruption of muscle fibers at the musculotendinous junction (MTJ), where most muscle injuries occur, can further
ablate the transfer of muscle-generated force to the skeletal system. Unfortunately, many therapeutic
approaches for VML solely focus on skeletal muscle, neglecting neighboring tissues that are essential for
function. Despite this clear clinical need, therapies to treat combined VML/MTJ injuries are lacking. Therefore,
the central objective of this proposal is to apply a tissue engineering scaffold mimicking MTJ structure to promote
innervated functional regeneration of VML/MTJ injuries. We will take an innovative biomaterials-based approach
that builds on our team’s recent development of a 3D aligned and electrically conductive collagen-
glycosaminoglycan (CG) scaffold that recapitulates both the anisotropic extracellular matrix (ECM) organization
and electrical excitability of native skeletal muscle. We hypothesize that an engineered biomaterial with spatially-
defined microenvironmental cues paired with bioreactor preconditioning of myogenic and neuronal cells will
enable regeneration of clinically relevant VML/MTJ injuries. We will test this hypothesis through two aims: 1)
Determine the combined ability of 3D scaffold alignment and electrical conductivity to drive in vitro myogenesis
of muscle-derived cell (MDC) and neural stem cell (NSC) co-cultures, and 2) Determine the ability of 3D multi-
compartment scaffolds with co-cultured MDCs and NSCs to guide repair of MTJ VML injuries. We will first build
on recent work demonstrating the utility of co-culturing neural and muscle progenitor cells to improve in vitro
myogenesis by determining if biomimetic scaffold cues, including 3D structural alignment and electrical
conductivity, can further amplify this process. We will evaluate MDC and NSC viability, proliferation, cytoskeletal
organization, and myotube and neuromuscular junction (NMJ) formation within scaffolds both with and without
electrical and/or mechanical stimulation. Anisotropic CG scaffolds with spatially-defined electrical conductivity
and mechanics to recapitulate the biophysical properties of the MTJ interface will then be implanted, with or
without bioreactor preconditioned MDCs and NSCs, in rat tibialis anterior VML/MTJ defects. Repair metrics will
include immunohistochemistry, quantification of force generation, and analysis of gait biomechanics over 24
weeks. Our proposal directly addresses the treatment of challenging and clinically relevant VML injuries while
answering previously intractable biological questions, including understanding of how scaffold structural and
electrical signals can synergistically promote myogenesis. Overall, our approach will establish an innovative
paradigm for regenerating multi-tissue interfaces and innervating electrically-responsive tissue.
摘要
体积性肌肉丧失(VML)损伤是导致肌肉功能永久丧失的衰弱性创伤。
此外,VML损伤通常由包括结缔组织和神经组织在内的多个组织的损伤而加重。
组织.周围神经系统损伤可导致去神经支配,这限制了力的产生,而
大多数肌肉损伤发生在肌腱连接处(MTJ),
消融肌肉产生的力向骨骼系统的转移。不幸的是,许多治疗
VML的方法仅关注骨骼肌,忽略了对VML至关重要的邻近组织。
功能尽管有这种明确的临床需求,但缺乏治疗VML/MTJ联合损伤的疗法。因此,我们认为,
该建议的中心目标是应用模拟MTJ结构的组织工程支架来促进
VML/MTJ损伤的神经支配功能再生。我们将采取创新的生物材料为基础的方法,
它建立在我们团队最近开发的3D排列和导电胶原蛋白的基础上,
糖胺聚糖(CG)支架,其概括了各向异性细胞外基质(ECM)组织
和天然骨骼肌的电兴奋性。我们假设一种在空间上-
明确的微环境提示与生肌细胞和神经细胞的生物反应器预处理配对,
使临床相关的VML/MTJ损伤再生。我们将通过两个目标来检验这一假设:1)
确定3D支架排列和电导率驱动体外肌生成的组合能力
肌源性细胞(MDC)和神经干细胞(NSC)共培养物的能力,以及2)确定3D多细胞共培养物的能力。
本发明的方法包括使用具有共培养的MDC和NSC的隔室支架来引导MTJ VML损伤的修复。我们将首先建立
最近的工作表明,共同培养神经和肌肉祖细胞的效用,以改善体外
通过确定仿生支架是否有线索(包括3D结构排列和电性)来进行肌肉生成
电导率可以进一步放大这一过程。我们将评估MDC和NSC的活力,增殖,细胞骨架,
组织,以及支架内的肌管和神经肌肉接头(NMJ)形成,
电刺激和/或机械刺激。具有空间限定的电导率的各向异性CG支架
和机械来概括MTJ界面的生物物理性质,
在无生物反应器预处理的MDCs和NSC的情况下,在大鼠胫骨前VML/MTJ缺陷中。修复指标将
包括免疫组织化学、力产生量化和24岁以上步态生物力学分析
周我们的建议直接解决了具有挑战性和临床相关的VML损伤的治疗,
回答以前难以解决的生物学问题,包括理解支架的结构和
电信号可以协同地促进肌生成。总的来说,我们的方法将建立一个创新的
用于再生多组织界面和神经支配电响应组织的范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Caliari其他文献
Steven Caliari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Caliari', 18)}}的其他基金
Aligned and electrically conductive collagen scaffolds for guiding innervated muscle-tendon junction repair of volumetric muscle loss injuries
对齐且导电的胶原蛋白支架,用于引导神经支配的肌肉肌腱连接修复体积性肌肉损失损伤
- 批准号:
10183865 - 财政年份:2021
- 资助金额:
$ 42.57万 - 项目类别:
Aligned and electrically conductive collagen scaffolds for guiding innervated muscle-tendon junction repair of volumetric muscle loss injuries
对齐且导电的胶原蛋白支架,用于引导神经支配的肌肉肌腱连接修复体积性肌肉损失损伤
- 批准号:
10397090 - 财政年份:2021
- 资助金额:
$ 42.57万 - 项目类别:
Designing cell-instructive hydrogels to understand and exploit mechanobiology
设计细胞指导水凝胶以理解和利用机械生物学
- 批准号:
10245190 - 财政年份:2020
- 资助金额:
$ 42.57万 - 项目类别:
Designing cell-instructive hydrogels to understand and exploit mechanobiology
设计细胞指导水凝胶以理解和利用机械生物学
- 批准号:
10663913 - 财政年份:2020
- 资助金额:
$ 42.57万 - 项目类别:
Designing cell-instructive hydrogels to understand and exploit mechanobiology
设计细胞指导水凝胶以理解和利用机械生物学
- 批准号:
10459473 - 财政年份:2020
- 资助金额:
$ 42.57万 - 项目类别:
Designing cell-instructive hydrogels to understand and exploit mechanobiology
设计细胞指导水凝胶以理解和利用机械生物学
- 批准号:
10029307 - 财政年份:2020
- 资助金额:
$ 42.57万 - 项目类别:
Dynamic Hydrogels for Probing Hepatic Stellate Cell Behavior During Fibrosis
用于探测纤维化过程中肝星状细胞行为的动态水凝胶
- 批准号:
8783331 - 财政年份:2014
- 资助金额:
$ 42.57万 - 项目类别:
Dynamic Hydrogels for Probing Hepatic Stellate Cell Behavior During Fibrosis
用于探测纤维化过程中肝星状细胞行为的动态水凝胶
- 批准号:
9104153 - 财政年份:2014
- 资助金额:
$ 42.57万 - 项目类别:
相似海外基金
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
- 批准号:
24K11201 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
- 批准号:
24K11281 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Continuing Grant
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
- 批准号:
EP/Z001145/1 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Fellowship
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334776 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
- 批准号:
2320040 - 财政年份:2023
- 资助金额:
$ 42.57万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 42.57万 - 项目类别:
Standard Grant