High-throughput characterization of antimicrobial peptide-PhoPQ interactions
抗菌肽-PhoPQ 相互作用的高通量表征
基本信息
- 批准号:10578744
- 负责人:
- 金额:$ 37.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-25 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAmino AcidsAnti-Bacterial AgentsBacteriaBindingBiochemicalBiologicalBiologyCellsCessation of lifeComputer AnalysisCytoplasmDNA sequencingDangerousnessEnterobacteriaceaeEpithelial CellsEpitheliumEscherichia coliFamilyFluorescence-Activated Cell SortingFood ContaminationFutureGene ExpressionGenesGenetic EngineeringGenetic TranscriptionGoalsHomologous GeneHumanImmuneImmune systemInfectionIngestionInnate Immune SystemInvadedKnowledgeLaboratoriesLinkLocationMacrophageMeasuresMediatingMembraneMethodsModelingMusMutation AnalysisNamesOrganismPathogenicityPathway interactionsPeptide LibraryPeptidesPhosphorylationPhysiologicalPlayProcessPropertyReporter GenesResistanceRoleSalmonella typhimuriumSignal TransductionSignal Transduction PathwaySiteSpecificityStructureSurfaceSynthetic Peptide LibrariesSystemSystemic infectionTechnologyTherapeuticTimeUnited StatesVirulenceWaterWorkantimicrobialantimicrobial drugantimicrobial peptidebiophysical analysisbiophysical propertiescathelicidincathelicidin antimicrobial peptidecostdesignenteric infectionexperimental studygastrointestinalin vivoinhibitorinsightintestinal epitheliummutantnew technologynext generationnovelpathogenpathogenic bacteriapeptide chemical synthesispressurepreventpromoterprotein-histidine kinasereconstitutionresistance generesponsesensorsensor histidine kinasesynthetic peptidevirulence gene
项目摘要
Project Summary/Abstract
The human immune system produces at least 140 different antimicrobial peptides (AMPs) to kill invading
bacteria. However, pathogenic bacteria use specialized pathways called two-component systems (TCSs) to
detect these AMPs and activate the expression of AMP-resistance and virulence genes. This response enables
pathogens to survive immune attacks and mount deadly infections. Therefore, elucidating the mechanisms by
which peptides interact with TCSs is critical to understanding how infections progress. This knowledge could
also lead to the design of new antimicrobial drugs that interfere with TCS-mediated AMP sensing. Gram-negative
Enterobacteriaceae, such as the common pathogen Salmonella Typhimurium, cause 200,000 infections and
10,000 deaths in the United States each year. The most important AMP-sensing TCS in Gram-negative
Enterobacteriaceae is named PhoPQ. Here, the membrane bound histidine kinase PhoQ senses AMPs and
responds by phosphorylating the cytoplasmic response regulator PhoP, which activates a gene expression
response. Though its interactions with a small number of model AMPs have been characterized, little is known
about the broader peptide binding and sensing capabilities of PhoQ. The major limitations have been the cost
and time required to chemically synthesize peptides and characterize their effects on TCSs using traditional
microbiological or biochemical methods. In preliminary work, we have developed a new technology named
SLAY-TCS that combines bacterial peptide display, fluorescence-activated cell sorting, and next-generation
DNA sequencing to measure how S. Typhimurium PhoQ responds to millions of peptides in a single experiment.
Using SLAY-TCS, we have already revealed that PhoQ senses a far wider range of peptides than previously
known. Here, we propose to use SLAY-TCS to characterize how S. Typhimurium PhoQ responds to nearly every
AMP produced by the human immune system, and thousands of mutants thereof, in order to reveal the identities,
sequence motifs, and biophysical properties of PhoQ-activating peptides (Aim 1). We will also combine this
approach with PhoQ mutational analyses to reveal how PhoQ sensing specificity has evolved across diverse
pathogens, which may have enabled them to adapt to different biogeographical locations in vivo (Aim 2). Finally,
we will use SLAY-TCS to perform the first large-scale characterization of peptide inhibitors of PhoQ, and explore
the efficacy of the strongest inhibitors we identify in preventing S. Typhimurium virulence in primary mouse
macrophages (Aim 3). The work in Aim 3 will reveal mechanisms by which exogenously-delivered peptides can
inhibit PhoQ, and could lead to the design of novel antimicrobial therapeutics based on modified peptides in the
future. Taken together, this proposal will substantially enhance our understanding of how a dangerous family of
bacteria causes infections in humans and accelerate the design of sorely-needed antimicrobial therapeutics.
Finally, our approach could be extended to other peptide-sensing TCSs beyond PhoPQ in future studies.
1
项目总结/摘要
人类免疫系统产生至少140种不同的抗菌肽(AMP),以杀死入侵的细菌。
细菌然而,病原菌使用称为双组分系统(TCS)的专门途径,
检测这些AMP并激活AMP抗性和毒力基因的表达。这种反应使
病原体在免疫攻击中存活并引发致命感染。因此,阐明机制,
哪些肽与TCS相互作用对于了解感染如何进展至关重要。这些知识可以
也导致设计新的抗微生物药物,干扰TCS介导的AMP传感。兰阴性
肠杆菌科,如常见的病原体鼠伤寒沙门氏菌,导致20万例感染,
美国每年有1万人死亡。革兰氏阴性菌中最重要的AMP敏感TCS
肠杆菌科被命名为PhoPQ。这里,膜结合组氨酸激酶PhoQ感测AMP,
通过磷酸化细胞质反应调节剂PhoP来响应,其激活基因表达
反应虽然它与少数模型AMP的相互作用已被表征,但知之甚少。
关于PhoQ更广泛的肽结合和传感能力。主要的限制是成本
和使用传统方法化学合成肽并表征其对TCS的影响所需的时间
微生物或生物化学方法。在初步工作中,我们开发了一种新技术,
SLAY-TCS结合了细菌肽展示、荧光激活细胞分选和下一代
DNA测序来测量S。鼠伤寒沙门氏菌PhoQ在一次实验中对数百万种肽有反应。
使用SLAY-TCS,我们已经揭示了PhoQ比以前更广泛地感知肽
知道的在这里,我们建议使用SLAY-TCS来表征S。Typhimurium PhoQ对几乎所有
人类免疫系统产生的AMP及其数千种突变体,为了揭示其身份,
序列基序和PhoQ激活肽的生物物理性质(Aim 1)。我们还将联合收割机
采用PhoQ突变分析的方法,以揭示PhoQ传感特异性如何在不同的
病原体,这可能使它们能够适应体内不同的地理位置(目的2)。最后,
我们将使用SLAY-TCS对PhoQ的肽抑制剂进行首次大规模表征,并探索
我们发现的最强抑制剂在预防S.原代小鼠中的鼠伤寒毒力
巨噬细胞(Aim 3)。目标3中的工作将揭示外源性递送肽可以
抑制PhoQ,并可能导致基于修饰肽的新型抗菌治疗剂的设计
未来总之,这项建议将大大提高我们对一个危险的家庭的理解,
细菌引起人类感染,加速了急需的抗菌治疗剂的设计。
最后,在未来的研究中,我们的方法可以扩展到PhoPQ之外的其他肽传感TCS。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Jay Tabor其他文献
Jeffrey Jay Tabor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Jay Tabor', 18)}}的其他基金
High-throughput characterization of antimicrobial peptide-PhoPQ interactions
抗菌肽-PhoPQ 相互作用的高通量表征
- 批准号:
10211894 - 财政年份:2021
- 资助金额:
$ 37.71万 - 项目类别:
High-throughput characterization of antimicrobial peptide-PhoPQ interactions
抗菌肽-PhoPQ 相互作用的高通量表征
- 批准号:
10378042 - 财政年份:2021
- 资助金额:
$ 37.71万 - 项目类别:
"Optogenetic control of amyloid beta protective gene expression in the C. elegans gut microbiota"
“线虫肠道微生物群中β淀粉样蛋白保护性基因表达的光遗传学控制”
- 批准号:
9228069 - 财政年份:2016
- 资助金额:
$ 37.71万 - 项目类别:
Dynamical interrogation of the Bacillus subtilis sporulation network using an engineered light-switchable promoter system
使用工程光开关启动子系统动态询问枯草芽孢杆菌孢子形成网络
- 批准号:
9059017 - 财政年份:2015
- 资助金额:
$ 37.71万 - 项目类别:
An Engineered Gene Network for Multicellular Pattern Formation
用于多细胞模式形成的工程基因网络
- 批准号:
7616783 - 财政年份:2008
- 资助金额:
$ 37.71万 - 项目类别:
An Engineered Gene Network for Multicellular Pattern Formation
用于多细胞模式形成的工程基因网络
- 批准号:
7485448 - 财政年份:2008
- 资助金额:
$ 37.71万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Research Grant