Plasma Cell-Free RNA as Non-invasive Biomarker for Neurodegeneration
血浆游离 RNA 作为神经退行性疾病的非侵入性生物标志物
基本信息
- 批准号:10582001
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:African AmericanAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease diagnosticAlzheimer&aposs disease modelAlzheimer’s disease biomarkerAmyloid beta-ProteinAmyloid depositionAreaAutopsyAwardBioinformaticsBiologicalBiological MarkersBrainCellsCerebrospinal FluidCerebrospinal Fluid ProteinsClinicalComplexCustomDataData SetDementiaDementia with Lewy BodiesDepositionDiagnosisDiagnostic testsDifferential DiagnosisDiseaseDisease ProgressionEarly DiagnosisEconomic BurdenFetal DevelopmentForensic MedicineGenesGoalsHigh-Throughput Nucleotide SequencingHumanImaging TechniquesIndividualInformaticsInterventionKnowledgeMachine LearningMalignant NeoplasmsMedical Care CostsMentorsMethodsModelingMonitorNerve DegenerationNeurodegenerative DisordersNucleic AcidsNucleotidesOutcomeParkinson DiseaseParkinson&aposs DementiaParticipantPathogenesisPathologicPathway interactionsPatientsPhasePlasmaPlasma CellsRNAROC CurveReagentResearch DesignSamplingScreening procedureSpecificityStudy SubjectSymptomsTechniquesTestingTimeTrainingTranscriptabeta depositionaccurate diagnosisalpha synucleinanticancer researchbasebioinformatics toolblood-based biomarkerburden of illnesscase controlcohortcost effectivecost effectivenessdeep neural networkdesigndiagnostic screeningdiagnostic tooldigitaldisease-causing mutationdisorder controlfeature selectionimprovedinnovationinsightlongitudinal datasetminimally invasivemutation carriernano-stringneuropathologynovel diagnosticsnovel markerpre-clinicalpredictive modelingpredictive toolsprenatal testingpresenilin-1presenilin-2prognostic toolskillstherapeutically effectivetooltraittranscriptometranscriptome sequencingtranscriptomicstreatment response
项目摘要
Project Summary / Abstract
Alzheimer disease (AD) is the most common neurodegenerative disorder. Pathological changes in the brain can
be observed at least 15 years before clinical symptoms (preclinical stage). An early and accurate diagnosis tool
could save $7.9 trillion in medical and care costs. Moreover, an effective therapeutic strategy could improve the
clinical outcome if delivered early. There is a clear need to develop cost-effective and non-invasive biomarkers
for AD that can be used to identify individuals before symptoms emerge and patients at early-symptomatic stages
of disease. These novel biomarkers could be also leveraged to monitor disease progression and responses to
therapies. Cell-free nucleic acids diagnostic tests have revolutionized prenatal screening, and cancer research,
diagnosis and treatment. Furthermore, specific transcripts ascertained from cell-free RNA have been evaluated
as biomarkers for AD, but so far, no high throughput approach has been attempted. The goal of this proposal is
to use high throughput sequencing of cell-free nucleic acids from plasma to construct a prediction model for
neurodegenerative diseases. I hypothesize that there are detectable changes in plasma cell-free nucleic acids
that are related to AD. During the K99 phase, I aim to predict accurately AD cases using cell-free nucleic acid
and bioinformatics tools, including machine learning. Briefly, I will sequence cell-free RNA present in longitudinal
samples of plasma from AD cases and controls, then build a predictive model. I will replicate this model in an
independent dataset of preclinical samples. I will include samples from mutation carriers and non-European
ancestry to validate the model. I will also determine if the model can predict other neurodegenerative diseases
or if it is specific to AD by quantifying plasma transcripts from patients with other neurodegenerative diseases.
My preliminary data show that this approach is feasible. I designed a preliminary predictive model with 10 AD
cases and 10 controls that has an area under the ROC curve of 1; then I replicated it in independent samples
(n=20) with an area under the ROC curve of 0.84. In four preclinical samples the ROC was 0.86 suggesting that
my model can also identify pre-symptomatic individuals. It is possible to improve this model by using more
powerful informatics approaches. Using deep neural networks, I obtained a ROC of 1 in the discovery dataset
and 0.94 in the replication dataset. During the R00 phase, I plan to use the same approach on other
neurodegenerative diseases to design specific predictive models. I will generate sequence data on the RNA
present in longitudinal plasma samples of cases and controls from Parkinson’s disease and dementia with Lewy
bodies to construct specific predictive models for each of them. Then I will replicate the models in preclinical
samples of these diseases. Combining the information on all neurodegenerative diseases will also allow me to
refine the predictive model and perform integrative analyses to describe mechanistic insights. My ultimate goal
is to be able to use the predictive models as diagnostic tools, and if possible, as early diagnostic tests. The
preliminary data is encouraging and opens the possibility of having plasma-based tests for neurodegeneration.
项目概要/摘要
阿尔茨海默病(AD)是最常见的神经退行性疾病。大脑的病理变化可以
至少在出现临床症状之前 15 年进行观察(临床前阶段)。早期准确的诊断工具
可以节省 7.9 万亿美元的医疗和护理费用。此外,有效的治疗策略可以改善
早期分娩的临床结果。显然需要开发具有成本效益和非侵入性的生物标志物
对于 AD,可用于在症状出现之前识别个体以及处于早期症状阶段的患者
的疾病。这些新型生物标志物还可用于监测疾病进展和对疾病的反应
疗法。无细胞核酸诊断测试彻底改变了产前筛查和癌症研究,
诊断和治疗。此外,还评估了从无细胞 RNA 中确定的特定转录本
作为 AD 的生物标志物,但迄今为止,尚未尝试过高通量方法。该提案的目标是
使用血浆中无细胞核酸的高通量测序来构建预测模型
神经退行性疾病。我假设血浆游离核酸存在可检测到的变化
与 AD 有关的。在K99阶段,我的目标是使用无细胞核酸准确预测AD病例
和生物信息学工具,包括机器学习。简而言之,我将对纵向存在的无细胞 RNA 进行测序
从 AD 病例和对照中提取血浆样本,然后建立预测模型。我将在一个模型中复制这个模型
临床前样本的独立数据集。我将包括来自突变携带者和非欧洲人的样本
祖先来验证模型。我还将确定该模型是否可以预测其他神经退行性疾病
或者通过量化其他神经退行性疾病患者的血浆转录物来确定 AD 的特异性。
我的初步数据表明这个方法是可行的。我用10 AD设计了一个初步的预测模型
ROC 曲线下面积为 1 的病例和 10 个对照;然后我将其复制到独立样本中
(n=20),ROC 曲线下面积为 0.84。在四个临床前样本中,ROC 为 0.86,表明
我的模型还可以识别出现症状前的个体。可以通过使用更多来改进该模型
强大的信息学方法。使用深度神经网络,我在发现数据集中获得了 1 的 ROC
复制数据集中为 0.94。在R00阶段,我计划在其他方面使用相同的方法
神经退行性疾病设计特定的预测模型。我将生成 RNA 的序列数据
存在于帕金森病和路易痴呆症病例和对照的纵向血浆样本中
机构为每个人构建特定的预测模型。然后我将在临床前复制模型
这些疾病的样本。结合所有神经退行性疾病的信息也将使我能够
完善预测模型并进行综合分析以描述机械见解。我的最终目标
是能够使用预测模型作为诊断工具,如果可能的话,作为早期诊断测试。这
初步数据令人鼓舞,并开启了基于血浆的神经变性测试的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Ibanez其他文献
Laura Ibanez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Ibanez', 18)}}的其他基金
Plasma Cell-Free RNA as Non-invasive Biomarker for Neurodegeneration
血浆游离 RNA 作为神经退行性疾病的非侵入性生物标志物
- 批准号:
9891490 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Plasma Cell-Free RNA as Non-invasive Biomarker for Neurodegeneration
血浆游离 RNA 作为神经退行性疾病的非侵入性生物标志物
- 批准号:
10090547 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Plasma Cell-Free RNA as Non-invasive Biomarker for Neurodegeneration
血浆游离 RNA 作为神经退行性疾病的非侵入性生物标志物
- 批准号:
10604399 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:














{{item.name}}会员




