Plasma Cell-Free RNA as Non-invasive Biomarker for Neurodegeneration

血浆游离 RNA 作为神经退行性疾病的非侵入性生物标志物

基本信息

  • 批准号:
    10604399
  • 负责人:
  • 金额:
    $ 24.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary / Abstract Alzheimer disease (AD) is the most common neurodegenerative disorder. Pathological changes in the brain can be observed at least 15 years before clinical symptoms (preclinical stage). An early and accurate diagnosis tool could save $7.9 trillion in medical and care costs. Moreover, an effective therapeutic strategy could improve the clinical outcome if delivered early. There is a clear need to develop cost-effective and non-invasive biomarkers for AD that can be used to identify individuals before symptoms emerge and patients at early-symptomatic stages of disease. These novel biomarkers could be also leveraged to monitor disease progression and responses to therapies. Cell-free nucleic acids diagnostic tests have revolutionized prenatal screening, and cancer research, diagnosis and treatment. Furthermore, specific transcripts ascertained from cell-free RNA have been evaluated as biomarkers for AD, but so far, no high throughput approach has been attempted. The goal of this proposal is to use high throughput sequencing of cell-free nucleic acids from plasma to construct a prediction model for neurodegenerative diseases. I hypothesize that there are detectable changes in plasma cell-free nucleic acids that are related to AD. During the K99 phase, I aim to predict accurately AD cases using cell-free nucleic acid and bioinformatics tools, including machine learning. Briefly, I will sequence cell-free RNA present in longitudinal samples of plasma from AD cases and controls, then build a predictive model. I will replicate this model in an independent dataset of preclinical samples. I will include samples from mutation carriers and non-European ancestry to validate the model. I will also determine if the model can predict other neurodegenerative diseases or if it is specific to AD by quantifying plasma transcripts from patients with other neurodegenerative diseases. My preliminary data show that this approach is feasible. I designed a preliminary predictive model with 10 AD cases and 10 controls that has an area under the ROC curve of 1; then I replicated it in independent samples (n=20) with an area under the ROC curve of 0.84. In four preclinical samples the ROC was 0.86 suggesting that my model can also identify pre-symptomatic individuals. It is possible to improve this model by using more powerful informatics approaches. Using deep neural networks, I obtained a ROC of 1 in the discovery dataset and 0.94 in the replication dataset. During the R00 phase, I plan to use the same approach on other neurodegenerative diseases to design specific predictive models. I will generate sequence data on the RNA present in longitudinal plasma samples of cases and controls from Parkinson’s disease and dementia with Lewy bodies to construct specific predictive models for each of them. Then I will replicate the models in preclinical samples of these diseases. Combining the information on all neurodegenerative diseases will also allow me to refine the predictive model and perform integrative analyses to describe mechanistic insights. My ultimate goal is to be able to use the predictive models as diagnostic tools, and if possible, as early diagnostic tests. The preliminary data is encouraging and opens the possibility of having plasma-based tests for neurodegeneration.
项目总结/摘要 阿尔茨海默病(Alzheimer disease,AD)是最常见的神经退行性疾病。大脑的病理变化可以 在出现临床症状(临床前阶段)前至少15年进行观察。早期准确的诊断工具 可以节省7.9万亿美元的医疗和护理费用。此外,有效的治疗策略可以改善 早期分娩的临床结局。显然需要开发具有成本效益和非侵入性的生物标志物 对于AD,可用于在症状出现之前识别个体和处于早期症状阶段的患者 疾病。这些新的生物标志物也可以用于监测疾病进展和对 治疗无细胞核酸诊断测试彻底改变了产前筛查和癌症研究, 诊断和治疗。此外,从无细胞RNA中确定的特异性转录物已经被评估 作为AD的生物标志物,但到目前为止,还没有尝试过高通量方法。这项提案的目的是 使用来自血浆的无细胞核酸的高通量测序来构建预测模型 神经退行性疾病我假设血浆游离核酸有可检测到的变化 与AD有关的。在K99阶段,我的目标是使用无细胞核酸准确预测AD病例 和生物信息学工具,包括机器学习。简而言之,我将对纵向存在的无细胞RNA进行测序, 从AD病例和对照的血浆样品,然后建立预测模型。我将在一个 临床前样本的独立数据集。我将包括突变携带者和非欧洲人的样本 祖先来验证模型。我还将确定该模型是否可以预测其他神经退行性疾病 或者通过定量来自患有其他神经退行性疾病的患者的血浆转录物来确定其是否对AD特异。 我的初步数据表明,这种方法是可行的。我设计了一个初步的预测模型, 病例和10个对照的ROC曲线下面积为1;然后我在独立样本中复制它 (n=20),ROC曲线下面积为0.84。在四个临床前样本中,ROC为0.86,表明 我的模型也能识别出症状前的个体可以通过使用更多的 强大的信息学方法。使用深度神经网络,我在发现数据集中获得了1的ROC 在复制数据集中为0.94。在R 00阶段,我计划在其他项目上使用相同的方法。 神经退行性疾病设计特定的预测模型。我会生成RNA的序列数据 存在于帕金森病和路易痴呆病例和对照的纵向血浆样本中 机构为每个人构建特定的预测模型。然后我会在临床前实验中复制这些模型 这些疾病的样本。结合所有神经退行性疾病的信息, 完善预测模型,并执行综合分析,以描述机制的见解。我的最终目标 是能够使用预测模型作为诊断工具,如果可能的话,作为早期诊断测试。的 初步数据令人鼓舞,并为基于等离子体的神经变性测试开辟了可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura Ibanez其他文献

Laura Ibanez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laura Ibanez', 18)}}的其他基金

Plasma Cell-Free RNA as Non-invasive Biomarker for Neurodegeneration
血浆游离 RNA 作为神经退行性疾病的非侵入性生物标志物
  • 批准号:
    9891490
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
Plasma Cell-Free RNA as Non-invasive Biomarker for Neurodegeneration
血浆游离 RNA 作为神经退行性疾病的非侵入性生物标志物
  • 批准号:
    10090547
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
Plasma Cell-Free RNA as Non-invasive Biomarker for Neurodegeneration
血浆游离 RNA 作为神经退行性疾病的非侵入性生物标志物
  • 批准号:
    10582001
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了