Validating a new, translatable biomaterial for healing critical bone defects
验证一种用于治疗严重骨缺损的新型可翻译生物材料
基本信息
- 批准号:10580837
- 负责人:
- 金额:$ 19.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAccelerationAddressAffectAllogenicAmericanBiocompatible MaterialsBiodegradationBiomimeticsBlood VesselsBone DevelopmentBone GrowthBone RegenerationClinicalClinical TrialsCompressive StrengthDefectDevelopmentDrug Delivery SystemsElectroplatingEngineeringExcisionFormulationFrequenciesFundingFutureGoalsGrainGrowth FactorHealthcareHumanImplantInfectionLifeLiteratureMalignant NeoplasmsMechanicsMedicineMetalsMethodsMineralsModelingModulusMothersMotivationNatureNutrientOrthopedicsOsseointegrationOsteogenesisOutcomeOutcome StudyPatientsPhasePilot ProjectsPorosityPowder dose formProcessPropertyRepeat SurgeryResearchResearch PersonnelSamplingSheepStructureTestingThinnessTissue EngineeringTrace ElementsTranslatingTraumaVariantVascularizationWorkbonebone healingcalcium phosphateclinical translationdensitydesigneconomic costexperiencefabricationfunctional outcomeshealingimprovedin vivolimb lossmechanical propertiesmineralizationosteogenicremediationsample fixationscaffoldstandard caresuccesstranslation to humanstranslational potentialtricalcium phosphatevirtualwasting
项目摘要
PROJECT SUMMARY/ABSTRACT
Poor healing of large bone defects remains one of the biggest challenges in human orthopedic medicine,
affecting more than 1.5 million Americans per year and often leading to infections and other clinical
complications, reoperations, poor functional outcomes, and ultimately, all too often, limb loss. The current gold-
standard treatment is large metal plate fixation, which is prone to infection and remains in the patient’s body for
life. Thus, there is a critical need to address this challenge in human medicine. Researchers have been working
on tissue engineered solutions for decades, using scaffolds made of tri-calcium-phosphate (TCP) due to their
excellent bioactivity (osteoinduction, osteoconduction and osseointegration), tunable degradation rate and
promising drug delivery capabilities. However, despite excellent bone regeneration properties, these scaffolds
are not strong enough to support significant loads, especially in critical defects. A viable solution to healing critical
defects requires fast, natural bone growth, vascular development, and mechanical integrity to support loads while
the new bone grows. Numerous trace elements that are found in bone, such as Zn, Mg, Sr, Si and Mn, have
been added to TCP scaffolds (a.k.a. “doping”) to improve mechanical properties and bioactivity, and accelerate
new bone formation. Many other trace elements may also play a role in bone development but have yet to be
explored. Unfortunately, an intractable combination of studies is required when one considers all combinations
of trace elements found in bone and ideal concentrations of each. No amount of funding will be enough to
evaluate all these combinations in bone healing. This virtually unlimited set of variants leads to a hypothesis that
natural bone may already contain the ideal mineral composition, after many millions of years of trial and error.
Rather than trying to re-engineer the mineral composition of bone, this proposal seeks to fabricate and fully
characterize bone regeneration scaffolds composed of naturally derived bone powder and test these
scaffolds in a pilot ovine in vivo study. We lean on mother nature to provide a possible solution. The novelty
of our approach is that we’re testing a new biomimetic biomaterial. No study to date has tested naturally derived
bone mineral in bone regeneration scaffolds. Our approach depends on a naturally derived material that would
be associated with lower regulatory burden, therefore, should be easier to translate to human medicine. We
hope to extend this work to develop similar methods using naturally derived human bone mineral for healing
human critical defects. If successful, this project could enable higher porosity structures to accelerate bioactivity
and vascularization, both of which would have a significant impact on critical defect bone healing. Our long-term
goal is to enable removal of all metal fixation, leaving only endogenous bone as we expect our naturally derived
biomaterials to be replaceable by native bone as our future work accelerates bone growth.
项目总结/文摘
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robocasting of Ceramic Fischer-Koch S Scaffolds for Bone Tissue Engineering.
用于骨组织工程的陶瓷Fischer-Koch S支架的机器人。
- DOI:10.3390/jfb14050251
- 发表时间:2023-04-30
- 期刊:
- 影响因子:4.8
- 作者:Baumer, Vail;Gunn, Erin;Riegle, Valerie;Bailey, Claire;Shonkwiler, Clayton;Prawel, David
- 通讯作者:Prawel, David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A Prawel其他文献
David A Prawel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A Prawel', 18)}}的其他基金
Validating a new, translatable biomaterial for healing critical bone defects
验证一种用于治疗严重骨缺损的新型可翻译生物材料
- 批准号:
10432592 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)