Modulating Stochastic Gene Expression for Cell-fate Control and Therapeutics
调节随机基因表达以控制细胞命运和治疗
基本信息
- 批准号:10581483
- 负责人:
- 金额:$ 91.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectArchitectureAttenuatedAwardBacteriaCell Fate ControlCellsCellular biologyChemosensitizationCircadian RhythmsClinicalCytoplasmDataDevelopmentDisparateElectrophysiology (science)Embryonic DevelopmentEngineeringEnhancersEvolutionFDA approvedFeedbackFlow CytometryGene ExpressionGenesGeneticGenetic TranscriptionGoalsHIVHeterogeneityInterventionKnowledgeLiteratureMalignant NeoplasmsMammalian CellMapsModelingMolecularNeurosciencesNoiseNuclear ExportOutcomePathway interactionsRegulator GenesReporterResearchRestRoleSafetyScienceSensorimotor functionsSourceSpecific qualifier valueStarvationStressSystemT-LymphocyteTestingTherapeuticTherapeutic EffectTranscription CoactivatorTranslationsViralVirus DiseasesVirus LatencyWorkYeastsbiological systemscell fate specificationcircadianclinical translationdrug repurposingeffective therapyembryonic stem cellimprovedin vivoknock-downmathematical modelmolecular modelingmutantnovelnovel therapeutic interventionpharmacologicposttranscriptionalpredictive modelingreactivation from latencystem cellssynergismtherapeutic developmenttherapeutic targettooltranscriptome
项目摘要
PROJECT SUMMARY
Stochastic fluctuations in gene expression are unavoidable at the single-cell level and affect fate decisions from
HIV to embryonic development. Yet, there remain fundamental gaps in our understanding of the mechanisms
generating and regulating expression fluctuations in mammalian cells. Addressing this gap in knowledge is
critical to therapeutic development in systems where fluctuations and heterogeneity present treatment barriers,
such as in HIV, stem-cell therapeutics, and cancer. Our long-term goal is to develop therapeutics that target
mechanisms of cellular heterogeneity to overcome barriers to precise control of cell fate.
During the past 5 years, our work established mechanistic roles for noise and heterogeneity, demonstrating that
noise is a feature, rather than a bug, of biological systems that can be modulated for therapeutic effect.
Specifically, we: (i) elucidated a viral transcriptional-feedback circuit that harnesses noise to regulate HIV latency,
(ii) found this circuit to be optimized by evolution to function as a viral bet-hedging circuit, (iii) made contributions
to cell biology showing that transcriptional fluctuations are, in general, amplified by nuclear export and translation,
and, (iv) we discovered a novel post-transcriptional feedback architecture that efficiently suppresses noise to
stabilize fate commitment. Most excitingly, and most relevant to this application, we (v) discovered noise-
enhancer molecules that appear to substantially improve viral reactivation from latency and have been used
by other labs to increase noise in diverse systems (e.g., circadian rhythm).
The objective of this renewal is to identify molecular mechanisms of noise modulation in mammalian cell-fate
circuits to enable therapeutic control of noise. Based on our findings and extensive preliminary evidence in
embryonic stem cells (ESCs), our central hypothesis is that generalized `core' cellular mechanisms exist to tune
expression noise and that these mechanisms can be pharmacologically perturbed. Our specific aims build off
our unique tool of noise-enhancer molecules and will: (Aim 1) map the molecular mechanistic pathways of noise
enhancer molecules to develop a mathematical model predictive of transcriptome-wide noise in mammalian
cells; (Aim 2) map the molecular mechanisms of noise-suppressor molecules; and (Aim 3) to quantify relative
contributions of stochastic vs. deterministic mechanisms underlying HIV latency in vivo and safety &
efficacy of noise-modulating molecules in vivo. The proposed research has broad significance as it will determine
core molecular mechanisms regulating expression in disparate fate-specification models, reveal genetic targets
of noise enhancement and suppression that can lead to the development of new broad-spectrum noise
modulators, and propel clinical translation of noise-modulating molecules. Ultimately, the knowledge gained will
guide new therapeutic approaches to overcome barriers to precise cell-fate control across diverse mammalian
systems.
项目摘要
基因表达的随机波动在单细胞水平上是不可避免的,并影响细胞的命运决定。
艾滋病毒对胚胎发育的影响。然而,在我们对这些机制的理解方面,
在哺乳动物细胞中产生和调节表达波动。解决这一知识差距是
在波动和异质性造成治疗障碍的系统中,
例如在HIV、干细胞治疗和癌症中。我们的长期目标是开发针对
细胞异质性机制,以克服障碍,精确控制细胞命运。
在过去的5年里,我们的工作建立了噪音和异质性的机械作用,表明
噪声是生物系统的一个特征,而不是一个缺陷,它可以被调节以达到治疗效果。
具体来说,我们:(i)阐明了一个病毒转录反馈电路,利用噪音来调节HIV潜伏期,
(ii)发现这个回路通过进化得到优化,以作为病毒性赌注对冲回路,(iii)做出了贡献
细胞生物学表明,转录波动,一般来说,放大核输出和翻译,
和,(iv)我们发现了一种新的转录后反馈结构,可以有效地抑制噪音,
稳定命运承诺。最令人兴奋的是,与此应用程序最相关的是,我们(v)发现了噪音-
增强子分子似乎显著改善了病毒从潜伏期的再活化,
以增加不同系统中的噪声(例如,昼夜节律)。
这次更新的目的是确定哺乳动物细胞命运中噪音调节的分子机制
电路以实现噪声的治疗控制。根据我们的发现和大量的初步证据,
胚胎干细胞(ESCs),我们的中心假设是,广义的“核心”细胞机制存在,以调整
表达噪音,这些机制可能会受到干扰。我们的具体目标建立在
我们独特的工具,噪音增强分子,并将:(目标1)地图的分子机制途径的噪音
增强子分子开发预测哺乳动物中转录组范围噪声的数学模型
(目的2)绘制噪声抑制分子的分子机制;(目的3)量化相对于噪声抑制的分子机制。
随机与确定性机制的贡献,这些机制是HIV在体内潜伏期和安全性的基础,
噪声调节分子在体内的功效。拟议的研究具有广泛的意义,因为它将决定
核心分子机制调节表达在不同的命运规范模型,揭示遗传靶点
噪声增强和抑制,可能导致新的广谱噪声的发展
调节剂,并推动噪音调节分子的临床翻译。最终,获得的知识将
指导新的治疗方法,以克服各种哺乳动物精确控制细胞命运的障碍
系统.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leor S Weinberger其他文献
Leor S Weinberger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leor S Weinberger', 18)}}的其他基金
A Gene Drive Therapy for HIV: single-administration intervention for high-risk groups
HIV基因驱动疗法:针对高危人群的单次给药干预
- 批准号:
10404422 - 财政年份:2021
- 资助金额:
$ 91.84万 - 项目类别:
A Gene Drive Therapy for HIV: single-administration intervention for high-risk groups
HIV基因驱动疗法:针对高危人群的单次给药干预
- 批准号:
10596543 - 财政年份:2020
- 资助金额:
$ 91.84万 - 项目类别:
A Gene Drive Therapy for HIV: single-administration intervention for high-risk groups
HIV基因驱动疗法:针对高危人群的单次给药干预
- 批准号:
10597282 - 财政年份:2020
- 资助金额:
$ 91.84万 - 项目类别:
A Gene Drive Therapy for HIV: single-administration intervention for high-risk groups
HIV基因驱动疗法:针对高危人群的单次给药干预
- 批准号:
10377987 - 财政年份:2020
- 资助金额:
$ 91.84万 - 项目类别:
A Gene Drive Therapy for HIV: single-administration intervention for high-risk groups
HIV基因驱动疗法:针对高危人群的单次给药干预
- 批准号:
10381365 - 财政年份:2020
- 资助金额:
$ 91.84万 - 项目类别:
A Gene Drive Therapy for HIV: single-administration intervention for high-risk groups
HIV基因驱动疗法:针对高危人群的单次给药干预
- 批准号:
10163412 - 财政年份:2020
- 资助金额:
$ 91.84万 - 项目类别:
A Gene Drive Therapy for HIV: single-administration intervention for high-risk groups
HIV基因驱动疗法:针对高危人群的单次给药干预
- 批准号:
10782797 - 财政年份:2020
- 资助金额:
$ 91.84万 - 项目类别:
Modulating Stochastic Gene Expression for Cell-fate Control and Therapeutics
调节随机基因表达以控制细胞命运和治疗
- 批准号:
10211509 - 财政年份:2014
- 资助金额:
$ 91.84万 - 项目类别:
Stochastic Gene Expression in Retroviral Latency
逆转录病毒潜伏期的随机基因表达
- 批准号:
9285693 - 财政年份:2014
- 资助金额:
$ 91.84万 - 项目类别:
Experiment & Theory to Test an Evolutionary Fitness Role for Lentiviral Latency
实验
- 批准号:
8891364 - 财政年份:2014
- 资助金额:
$ 91.84万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 91.84万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 91.84万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 91.84万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 91.84万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 91.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 91.84万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 91.84万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 91.84万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 91.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 91.84万 - 项目类别:
Studentship