Flt3l gene-modified cDC1 in situ vaccination in NSCLC: mechanisms and therapeutic application

Flt3l 基因修饰的 cDC1 原位疫苗接种在 NSCLC 中的作用:机制和治疗应用

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Dr. Salehi-Rad is a Staff Pulmonologist at the VA Greater Los Angeles Healthcare System (VA GLAHS) with a clinical and research interest in lung cancer, the leading cause of cancer death among U.S. Veterans. In applying for the VA Career Development Award (CDA-2), Dr. Salehi-Rad’s goal is to establish an independent translational research program at the VA GLAHS, focused on improving our understanding of the immunopathogenesis of lung cancer for the development of novel approaches for cancer immunotherapy. He is supported by Steven Dubinett, MD (Primary-Mentor), a renowned VA Merit-funded physician-scientist and a leading expert in lung cancer, Antoni Ribas, MD, PhD (Co-Mentor), an internationally recognized authority in cancer immunology, and Paul Boutros, PhD (Co-mentor), a distinguished data scientist. Mentors were identified based on their complementary scientific expertise for the proposed research and their extensive experience in mentoring academic physician-scientists. Through UCLA Clinical and Translational Science Institute (CTSI), Dr. Salehi-Rad will have access to numerous career development seminars that address such topics as grant writing, manuscript preparation, and ethical research. He will also take graduate courses to obtain further training in immunology and bioinformatics. Dr. Salehi-Rad will have the full institutional support of both the VA and UCLA Health Systems to carry out his research. Dr. Salehi-Rad has established clinically relevant murine models of NSCLC with increased mutational burden and identified a novel targetable mechanism of resistance to immunotherapy in LKB1-deficient NSCLC. Utilizing these murine models, Dr. Salehi-Rad has shown that in situ vaccination (ISV) with elite antigen cross- presenting conventional type 1 DCs that are gene-modified to secrete FMS-like tyrosine kinase 3 ligand (FLT3L- cDC1), a cytokine that promotes DC viability and expansion, sensitize immune refractory NSCLC to immune checkpoint inhibition (ICI). In this proposal, Dr. Salehi-Rad aims to study the immune mechanisms of DC ISV. Aim 1.1 builds on preliminary in vitro data indicating enhanced viability of FLT3L-cDC1 compared to cDC1 and seeks to determine the molecular mechanisms that result in increased survival of FTL3L-cDC1. Aim 1.2 & 1.3 utilize various murine models to determine the vaccine and endogenous DC viability, antigen trafficking and antigen-specific T cell priming following DC ISV. Aim 2 of the proposal focuses on elucidating the immune determinants of response to DC ISV as monotherapy or as a combination therapy with ICI. Aim 2.1 & 2.2 combine single cell immunophenotyping by flow cytometry and single cell RNA-sequencing (scRNA-seq) with spatial analysis by multiplex immunofluorescence (MIF) to develop a comprehensive understanding of the local and systemic immune responses induced by DC ISV. Aim 2.3 utilizes antibody depletion studies to evaluate the dependency of DC ISV on T cells and natural killer cells. Aim 3 will determine the evolution of T cell repertoires by TCR-β CDR3 sequencing and tumor-neoantigen profiles by whole-exome sequencing (WES) to assess whether DC ISV induces the expansion of the TCR repertoire and promotes tumor immunoediting. Improved understanding of the nature of immunosuppression in NSCLC and the immunostimulatory mechanisms of DC ISV will represent a significant contribution to the field of lung cancer immunology and could facilitate the clinical translation of FLT3L-cDC1 ISV as an innovative therapeutic strategy for this devastating disease that affects many of our Veterans.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ramin Salehi-Rad其他文献

Ramin Salehi-Rad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了