ROS scavenging nanoparticles for mitigating oxidative stress in osteoarthritis
ROS清除纳米颗粒可减轻骨关节炎的氧化应激
基本信息
- 批准号:10584738
- 负责人:
- 金额:$ 40.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-23 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnimal ModelAnti-Inflammatory AgentsAntiinflammatory EffectAntioxidantsArthralgiaArtificial nanoparticlesBehavioral AssayBenchmarkingBiochemicalBiologicalBiological AvailabilityCartilageCellsCharacteristicsChondrocytesClinicalDegenerative polyarthritisDevelopmentDisadvantagedDiseaseDisease ProgressionDisease modelDoseEngineeringEnzymesExtracellular MatrixFaceHistologicHumanIn VitroInflammationInflammatoryIntra-Articular InjectionsJointsLocationMacrophageManganeseMediatingModelingMonitorMorphologyMotivationNatural regenerationOxidation-ReductionOxidative StressOxidative Stress InductionPainPathogenesisPathway AnalysisPathway interactionsPhenotypePlayProductionPropertyRattusReactive Oxygen SpeciesRegimenReportingResearchRodentRoleSignal TransductionSourceStructureSymptomsSynovial FluidTactileTestingTherapeuticTissuesTranslationsTraumatic ArthropathyWorkantioxidant enzymearthropathiesbonechondroprotectioncostcytokinedelivery vehicledesigndisabilityeffective therapyefficacy evaluationefficacy testingextracellulargait examinationhuman tissueimmunogenicityimprovedin vivojoint destructionjoint functionjoint injurylongitudinal analysisnanomaterialsnanoparticlenanoparticle deliverynovel strategiesparticlepreservationpreventprotein degradationreduce symptomssmall moleculesuccesstargeted agenttherapeutic targettherapy outcometranscriptome sequencingtreatment responsetreatment strategyuptake
项目摘要
PROJECT SUMMARY
Oxidative stress plays a key role in the pathogenesis of osteoarthritis (OA) and is an important therapeutic target.
While antioxidants or agents that target the reactive oxygen species (ROS) have been investigated for treating
OA, many have demonstrated common disadvantages such as poor bioavailability and stability, as well as rapid
joint clearance or release profiles from delivery vehicles following intra-articular injections. Therefore, there exists
a critical need to localize and retain therapeutic levels of antioxidants within joint tissues for protection against
the deleterious effects of oxidative stress. This proposal explores the application of manganese dioxide
nanoparticles (MnO2 NPs) with antioxidant enzyme-like activity to reduce oxidative stress in OA joints while
addressing limitations of small molecule antioxidants and natural enzymes, such as cost and stability. In addition,
the properties of these nanomaterials can be tailored for tissue retention and cell targeting, which is important
for addressing critical barriers to therapeutic localization and uptake in joint tissues. Recently, we reported
engineering MnO2 NPs for uptake into cartilage and prolonged joint retention in vivo, as well as reduction of
inflammation-induced oxidative stress in cartilage in vitro. Given its limited capacity to regenerate, cartilage is
particularly vulnerable to oxidative stress and represents a crucial yet challenging tissue target. As such, this
proposal focuses on interrogating the mechanisms of MnO2 NP-mediated chondroprotection while testing the
efficacy of MnO2 NPs in an in vivo disease model. The central hypothesis is that MnO2 NPs will alleviate oxidative
stress after joint injury and prevent or delay the onset of OA. In Aim 1, we will examine how uptake mechanisms
and intracellular localization of MnO2 NPs affect compartment-specific ROS scavenging and the ability to rescue
specific antioxidant pathways in chondrocytes. Furthermore, the effects of intracellular targeting versus
extracellular retention on redox signaling, chondroprotective, and anti-inflammatory effects will be determined.
In Aim 2, we will evaluate the effects of MnO2 NP treatment on oxidative stress and OA progression in vivo in a
rat model of post-traumatic OA (PTOA). We will comprehensively evaluate the efficacy of the particles in
modulating ROS in vivo, mitigating OA-related histological and biochemical (synovial fluid) changes, and
alleviating OA-related pain and disability via behavioral assays. The proposed work will advance a new ROS
scavenging strategy for the treatment of PTOA that overcomes persistent challenges with the delivery of
antioxidants. The proposed work will also reveal key mechanisms involved in intracellular delivery to
chondrocytes and how location and timing of antioxidant delivery impacts disease mechanisms. The mechanistic
and comprehensive approach we propose here to characterize the effects of ROS scavenging by MnO2 NPs
may facilitate successful translation long-term of this and/or other antioxidant strategies for joint injuries and
disease.
项目摘要
氧化应激在骨关节炎(OA)的发病机理中起关键作用,并且是重要的治疗靶点。
虽然已经研究了靶向活性氧(ROS)的抗氧化剂或药物以治疗
OA,许多人表现出常见的缺点,例如差的生物利用度和稳定性以及快速
关节内注射后的关节清除或释放档案。因此,存在
关节组织中局部定位和保留抗氧化剂的治疗水平的迫切需要
氧化应激的有害作用。该提案探讨了二氧化锰的应用
纳米颗粒(MNO2 NP)具有抗氧化酶样活性,以减少OA关节中的氧化应激
解决小分子抗氧化剂和天然酶的局限性,例如成本和稳定性。此外,
这些纳米材料的特性可以针对组织保留和细胞靶向定制,这很重要
解决关节组织中治疗定位和摄取的关键障碍。最近,我们报道
工程MNO2 NP,以吸收软骨和长时间的关节保留,并减少
炎症引起的体外软骨中的氧化应激。鉴于其再生能力有限,软骨是
特别容易受到氧化应激的影响,代表了至关重要但具有挑战性的组织靶标。因此,这个
提案的重点是询问MNO2 NP介导的软骨保护的机制,同时测试
MNO2 NP在体内疾病模型中的功效。中心假设是MNO2 NP会减轻氧化
关节损伤后的压力并防止或延迟OA的发作。在AIM 1中,我们将研究如何使用摄取机制
MNO2 NP的细胞内定位会影响室特异性ROS清除和营救能力
软骨细胞中的特定抗氧化途径。此外,细胞内靶向与
将确定氧化还原信号传导,软骨保护和抗炎作用的细胞外保留。
在AIM 2中,我们将评估MNO2 NP处理对A中氧化应激和OA进展的影响
创伤后OA(PTOA)的大鼠模型。我们将全面评估粒子在
调节ROS在体内,减轻与OA相关的组织学和生化(滑液)的变化,并且
通过行为分析缓解与OA相关的疼痛和残疾。拟议的工作将推动新的ROS
清除治疗PTOA的策略,通过交付来克服持续的挑战
抗氧化剂。拟议的工作还将揭示细胞内递送涉及的关键机制
软骨细胞以及抗氧化剂递送的位置和时间如何影响疾病机制。机械
我们在这里提出的全面方法是为了表征MNO2 NP的ROS清除的影响
可能会促进该和/或其他抗氧化剂的联合伤害策略的长期成功翻译
疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Blanka Sharma其他文献
Blanka Sharma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Blanka Sharma', 18)}}的其他基金
Nanoparticle targeting within the joint for site-specific delivery of osteoarthritis therapeutics
纳米颗粒靶向关节内,用于骨关节炎治疗药物的位点特异性递送
- 批准号:
9933586 - 财政年份:2019
- 资助金额:
$ 40.27万 - 项目类别:
Nanoparticle targeting within the joint for site-specific delivery of osteoarthritis therapeutics
纳米颗粒靶向关节内,用于骨关节炎治疗药物的位点特异性递送
- 批准号:
10400636 - 财政年份:2018
- 资助金额:
$ 40.27万 - 项目类别:
Nanoparticle targeting within the joint for site-specific delivery of osteoarthritis therapeutics
纳米颗粒靶向关节内,用于骨关节炎治疗药物的位点特异性递送
- 批准号:
9901358 - 财政年份:2018
- 资助金额:
$ 40.27万 - 项目类别:
Nanoparticle targeting within the joint for site-specific delivery of osteoarthritis therapeutics
纳米颗粒靶向关节内,用于骨关节炎治疗药物的位点特异性递送
- 批准号:
10399819 - 财政年份:2018
- 资助金额:
$ 40.27万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 40.27万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 40.27万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 40.27万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 40.27万 - 项目类别:
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 40.27万 - 项目类别: