Optimized Electrical Block of Peripheral Nerves
优化周围神经电阻滞
基本信息
- 批准号:10583031
- 负责人:
- 金额:$ 45.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnesthesia proceduresAnimal ModelAnimalsAutonomic DysfunctionAxonC FiberCervicalChargeComplexComputer ModelsDevelopmentDiabetes MellitusDiameterDiscontinuous CapillaryElectric StimulationElectrodesElementsEngineeringFamily suidaeFiberFrequenciesGeometryHeart RateHeart failureHornsHumanInflammationMeasuresMedical DeviceNatureNerveNerve BlockNerve FibersNeural ConductionOutcomePain managementPerformancePeripheralPeripheral NervesPhysiologic pulsePhysiologicalRattusShapesSignal TransductionTechnologyTestingTrainingTranslationsVagus nerve structureautonomic nervebioelectronicschronic pain managementclinical applicationclinical translationdesignengineering designexperimental studyin vivoin vivo evaluationneuralneuroregulationnovelparticlepreclinical studypreservationresponsesciatic nervetherapeutic targettool
项目摘要
Electrical block of neural conduction has myriad potential clinical applications including treatment of pain and
autonomic dysfunction such as heart failure, diabetes and inflammation. However, these therapeutic targets
require block of small diameter myelinated Ad- and B-fibers and unmyelinated C-fibers, while the majority of prior
studies of block were on block of large diameter myelinated Aa-fibers. The continued development of nerve block
and its clinical translation are limited by: (1) the high energy required for conduction block, especially for the
small diameter nerve fibers most relevant for bioelectronic therapies, (2) the strong excitatory response that
occurs at the onset of blocking signals, which is likely to be exacerbated by the high block thresholds of small
diameter axons, and (3) the lack of control over which specific nerve fibers are blocked, such that blocking small
diameter axons also results in block of larger diameter axons. We propose rigorous engineering design to
optimize the performance of nerve block waveforms and electrodes and in vivo testing of their performance in
both small and large animals. Aim 1 is to optimize simultaneously the waveform and electrode geometry to meet
each of three distinct performance criteria: minimize energy required for block, minimize onset response
associated with the initiation of block, and enable selective block of small diameter axons (myelinated Ad- or B-
fibers or unmyelinated C-fibers) while preserving conduction in large diameter Aa-fibers. We will combine
validated computational models with engineering optimization via a particle swarm algorithm to design new
waveform shapes and electrode geometries to achieve our performance metrics and thereby greatly increase
the utility of nerve conduction block. In Aim 2, we will measure the responses of different types of nerve fibers
(A-, B-, and C-fibers) in both the vagus nerve and the sciatic nerve of anesthetized rats to compare the
performance of optimized block waveforms and electrode geometries to conventional waveform shapes
(sinusoids, rectangular pulses) and electrode geometries (bipolar, tripolar) used for block of nerve fiber
conduction. In Aim 3 we will measure both nerve fiber responses and physiological responses, including
electromyograms and changes in heart rate, to block of the pig vagus nerve to quantify performance, including
energy, onset response, and selectivity, in a large, multi-fascicular nerve that represents well human nerves.
The outcomes will be novel waveforms and electrode geometries that overcome the performance limitations of
current approaches to conduction block including the high energy requirements, the strong excitatory onset
response, and the lack of control over which specific nerve fibers are blocked. These enhanced capabilities will
advance electrical nerve block as an experimental tool and provide technologies to enable the continued
translation of new bioelectronic therapies.
神经传导的电传导具有无数潜在的临床应用,包括治疗疼痛和
自主神经功能障碍,如心力衰竭、糖尿病和炎症。然而,这些治疗靶点
需要阻断小直径的有髓Ad和B纤维以及无髓C纤维,而之前的大多数
对大直径有髓AA纤维的阻断研究。神经阻滞的持续发展
其临床转译受限于:(1)传导阻滞所需的高能量,尤其是对
与生物电子疗法最相关的小直径神经纤维,(2)强烈的兴奋性反应
在阻塞信号开始时发生,这可能会因Small的高阻塞阈值而加剧
轴突直径,以及(3)对哪些特定神经纤维被阻断缺乏控制,以至于阻塞较小
直径轴突也会导致较大直径轴突的阻塞。我们建议进行严格的工程设计,以
优化神经阻滞波形和电极的性能并在体内测试它们的性能
无论是小型动物还是大型动物。目标1是同时优化波形和电极几何形状以满足
三个不同的性能标准中的每一个:最大限度地减少阻塞所需的能量,最大限度地减少起始响应
与启动阻断有关,并使选择性阻断小直径轴突(有髓Ad-或B-
纤维或无髓C纤维),同时保留大直径AA纤维的传导。我们将联合起来
通过粒子群算法通过工程优化验证计算模型以设计新的
波形形状和电极几何形状来实现我们的性能指标,从而大大提高
神经传导阻滞的应用。在目标2中,我们将测量不同类型神经纤维的反应
(A、B和C纤维)在麻醉大鼠的迷走神经和坐骨神经中进行比较。
优化块波形和电极几何形状与常规波形形状的性能
(正弦、矩形脉冲)和用于神经纤维阻断的电极几何形状(双极、三极)
传导。在目标3中,我们将测量神经纤维反应和生理反应,包括
肌电和心率的变化,以阻断猪的迷走神经来量化表现,包括
能量,起效反应和选择性,在一个大的,多束神经,很好地代表人类神经。
其结果将是新的波形和电极几何形状,它们克服了
目前治疗传导阻滞的方法包括高能量需求、强兴奋性发作
反应,以及缺乏对哪些特定神经纤维被阻断的控制。这些增强的功能将
先进的电神经阻滞作为实验工具,并提供技术使继续
翻译新的生物电子疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Warren M. Grill其他文献
Average firing rate rather than temporal pattern determines metabolic cost of activity in thalamocortical relay neurons
平均放电率而不是时间模式决定丘脑皮质中继神经元活动的代谢成本
- DOI:
10.1038/s41598-019-43460-8 - 发表时间:
2019-05 - 期刊:
- 影响因子:4.6
- 作者:
Guosheng Yi;Warren M. Grill - 通讯作者:
Warren M. Grill
Treatment of bradykinesia and tremor in Parkinson’s disease (PD) with deep brain stimulation (DBS) is robust to gaps in stimulation
- DOI:
10.1016/j.brs.2023.01.679 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Kay Palopoli-Trojani;Stephen L. Schmidt;Jennifer J. Peters;Dennis A. Turner;Warren M. Grill - 通讯作者:
Warren M. Grill
Simultaneous DBS local evoked potentials in the subthalamic nucleus and globus pallidus during local and remote deep brain stimulation
- DOI:
10.1016/j.brs.2023.01.680 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Stephen L. Schmidt;Jahrane Dale;Dennis A. Turner;Warren M. Grill - 通讯作者:
Warren M. Grill
Abstract #84: Transcranial Magnetic Stimulation of Morphologically-Accurate, Layer-Specific Model Neurons in Realistic Head Geometry
- DOI:
10.1016/j.brs.2018.12.091 - 发表时间:
2019-03-01 - 期刊:
- 影响因子:
- 作者:
Aman S. Aberra;Boshuo Wang;Warren M. Grill;Angel V. Peterchev - 通讯作者:
Angel V. Peterchev
Technology of deep brain stimulation: current status and future directions
深部脑刺激技术:现状与未来方向
- DOI:
10.1038/s41582-020-00426-z - 发表时间:
2020-11-26 - 期刊:
- 影响因子:33.100
- 作者:
Joachim K. Krauss;Nir Lipsman;Tipu Aziz;Alexandre Boutet;Peter Brown;Jin Woo Chang;Benjamin Davidson;Warren M. Grill;Marwan I. Hariz;Andreas Horn;Michael Schulder;Antonios Mammis;Peter A. Tass;Jens Volkmann;Andres M. Lozano - 通讯作者:
Andres M. Lozano
Warren M. Grill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Warren M. Grill', 18)}}的其他基金
NeuroSimNIBS: Integrated electric field and neuronal response modeling for transcranial electric and magnetic stimulation
NeuroSimNIBS:用于经颅电和磁刺激的集成电场和神经元反应模型
- 批准号:
10611858 - 财政年份:2022
- 资助金额:
$ 45.71万 - 项目类别:
NeuroSimNIBS: Integrated electric field and neuronal response modeling for transcranial electric and magnetic stimulation
NeuroSimNIBS:用于经颅电和磁刺激的集成电场和神经元反应模型
- 批准号:
10345305 - 财政年份:2022
- 资助金额:
$ 45.71万 - 项目类别:
Modeling Activation and Block of Autonomic Nerves for Analysis and Design
自主神经激活和阻滞建模用于分析和设计
- 批准号:
10187336 - 财政年份:2017
- 资助金额:
$ 45.71万 - 项目类别:
Modeling Activation and Block of Autonomic Nerves for Analysis and Design
自主神经激活和阻滞建模用于分析和设计
- 批准号:
10003460 - 财政年份:2017
- 资助金额:
$ 45.71万 - 项目类别:
Modeling Activation and Block of Autonomic Nerves for Analysis and Design
自主神经激活和阻滞建模用于分析和设计
- 批准号:
10461325 - 财政年份:2017
- 资助金额:
$ 45.71万 - 项目类别:
Recording Evoked Potentials for Closed-Loop DBS
记录闭环 DBS 诱发电位
- 批准号:
8852410 - 财政年份:2014
- 资助金额:
$ 45.71万 - 项目类别:
Recording Evoked Potentials for Closed-Loop DBS
记录闭环 DBS 诱发电位
- 批准号:
8720076 - 财政年份:2012
- 资助金额:
$ 45.71万 - 项目类别:
Recording Evoked Potentials for Closed-Loop DBS
记录闭环 DBS 诱发电位
- 批准号:
8501710 - 财政年份:2012
- 资助金额:
$ 45.71万 - 项目类别:
Recording Evoked Potentials for Closed-Loop DBS
记录闭环 DBS 诱发电位
- 批准号:
8335751 - 财政年份:2012
- 资助金额:
$ 45.71万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Continuing Grant