Temporal Patterns of Spinal Cord Stimulation
脊髓刺激的时间模式
基本信息
- 批准号:9898687
- 负责人:
- 金额:$ 110.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgreementBiophysicsBostonClinicalComputer SimulationComputer softwareDataDevelopmentDimensionsEffectivenessElectrodesElectrophysiology (science)EngineeringEnvironmental WindFoundationsFrequenciesGeometryHyperalgesiaImplantMeasurementMeasuresMediatingMedical DeviceModelingModernizationNeuronsNeurostimulation procedures of spinal cord tissueNociceptionOperative Surgical ProceduresOutcomePainPatientsPatternPhysiologic pulsePositioning AttributeRattusRefractoryResearchSensorySpatial DistributionSpinalSpinal CordSpinal cord posterior hornSystemTechnologyTestingTimeTranslationsValidationVariantWorkallodyniabasebehavioral outcomebiophysical propertieschronic neuropathic painchronic painchronic pain patientclinical translationcommercializationcomparativedesigndorsal hornexperienceexperimental studyfirst-in-humanimprovedimproved outcomein vivoin vivo evaluationinnovationmedical implantnerve injuryneural networkneuroregulationnovelpain inhibitionpain outcomepain reliefpainful neuropathyprogramsrelating to nervous systemresearch and developmentsignal processingspared nervespontaneous painsuccesstherapy developmenttranslational study
项目摘要
Spinal cord stimulation (SCS) is an implanted medical device therapy for refractory chronic pain. However, fewer
than 2/3 of patients typically experience at least a 50% reduction in pain, and despite several decades of research
and development, the proportion of patients achieving clinical success has not increased over time. We are
pursuing a new stimulation parameter dimension – the temporal pattern of stimulation – and the purpose of this
project is to design and test optimized temporal patterns of stimulation to improve the efficacy of SCS to treat
chronic neuropathic pain. We will use a validated biophysically-based model of the effects of SCS on sensory
signal processing in the dorsal horn of the spinal cord to design optimized temporal patterns of SCS. The
optimized temporal patterns are intended to exploit the dynamics of inhibitory mechanisms in the dorsal horn of
the spinal cord. SCS produces both excitation and inhibition of pain transmitting spinal neurons, and the temporal
patterns will be optimized to weaken SCS-mediated excitation while amplifying SCS-mediated inhibition. We will
use sensitivity analyses to determine the robustness of stimulation patterns to potential variations in electrode
positioning, selectivity of stimulation, and the biophysical properties of the dorsal horn neural network, especially
the compromised inhibitory mechanisms present in chronic pain. Subsequently, we will measure the effects of
the temporal pattern of SCS on pain-related behavioral outcomes in the spared nerve injury (SNI) rat model of
chronic neuropathic pain. We expect that novel temporal patterns of SCS will produce greater suppression of
allodynia and hyperalgesia, as well as spontaneous pain, than will frequency-matched control patterns. Our in
silico and in vivo electrophysiological data demonstrate that temporal patterns of SCS produced a more than
50% greater suppression of projection neuron firing rates than conventional SCS, and this suggests that resulting
improvements in in pain outcomes will exceed the 30% threshold for meaningful change. We will also quantify
the effects of optimized temporal pattern of SCS on the activity of spinal cord projection neurons in the SNI rat
model of chronic pain. We expect that optimized temporal patterns of SCS will produce greater reductions in
firing rates and wind up of spinal wide dynamic range and nociceptive specific neurons than frequency matched
control patterns. The temporal pattern of SCS is a novel and important parameter that we will exploit to expand
the design space for SCS from the spatial distribution–where–of stimulation to the temporal pattern–when–of
stimulation. The outcome will be an assessment of the feasibility of using optimized temporal patterns of SCS to
treat neuropathic pain, and will provide the foundation for translational studies in patients with chronic pain.
Importantly, this approach has a clear and comparatively short road to clinical translation, as existing implanted
pulse generators could be re-programmed to deliver optimized temporal patterns of SCS.
脊髓电刺激(SCS)是一种用于治疗顽固性慢性疼痛的植入式医疗器械。然而,
超过2/3的患者通常经历至少50%的疼痛减轻,尽管几十年的研究,
然而,随着时间的推移,获得临床成功的患者比例并没有增加。我们
追求新的刺激参数维度-刺激的时间模式-以及这一目的
该项目旨在设计和测试优化的刺激时间模式,以提高SCS治疗的疗效
慢性神经性疼痛我们将使用经过验证的基于生物物理学的模型来研究SCS对感觉的影响
脊髓背角中的信号处理以设计SCS的优化时间模式。的
优化的时间模式旨在利用脊髓背角中抑制机制的动力学,
脊髓。SCS产生传递疼痛的脊髓神经元的兴奋和抑制,并且颞叶神经元的兴奋和抑制是由脊髓神经元的兴奋和抑制引起的。
模式将被优化以减弱SCS介导的兴奋,同时放大SCS介导的抑制。我们将
使用灵敏度分析来确定刺激模式对电极中潜在变化的稳健性
定位、刺激的选择性和背角神经网络的生物物理特性,特别是
慢性疼痛中存在的受损抑制机制。随后,我们将测量
SCS对保留神经损伤(SNI)大鼠模型中疼痛相关行为结果的时间模式,
慢性神经性疼痛我们预计,新的时间模式的SCS将产生更大的抑制,
异常性疼痛和痛觉过敏,以及自发性疼痛,将比频率匹配的控制模式。我们在
计算机和体内电生理数据表明,SCS的时间模式产生了超过
投射神经元放电率的抑制比传统SCS高50%,这表明,
疼痛结果的改善将超过有意义变化的30%阈值。我们还将量化
优化的脊髓刺激时间模式对SNI大鼠脊髓投射神经元活动的影响
慢性疼痛模型我们预计,SCS的优化时间模式将产生更大的减少,
放电率和发条的脊髓宽动态范围和伤害性特异性神经元比频率匹配
控制模式。SCS的时间模式是一个新的和重要的参数,我们将利用扩展
SCS的设计空间从刺激的空间分布到时间模式
刺激.其结果将是评估使用SCS的优化时间模式的可行性,
治疗神经性疼痛,并将为慢性疼痛患者的转化研究提供基础。
重要的是,这种方法具有明确且相对较短的临床转化之路,因为现有的植入物
可以对脉冲发生器进行重新编程以递送SCS的优化时间模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Warren M. Grill其他文献
Average firing rate rather than temporal pattern determines metabolic cost of activity in thalamocortical relay neurons
平均放电率而不是时间模式决定丘脑皮质中继神经元活动的代谢成本
- DOI:
10.1038/s41598-019-43460-8 - 发表时间:
2019-05 - 期刊:
- 影响因子:4.6
- 作者:
Guosheng Yi;Warren M. Grill - 通讯作者:
Warren M. Grill
Treatment of bradykinesia and tremor in Parkinson’s disease (PD) with deep brain stimulation (DBS) is robust to gaps in stimulation
- DOI:
10.1016/j.brs.2023.01.679 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Kay Palopoli-Trojani;Stephen L. Schmidt;Jennifer J. Peters;Dennis A. Turner;Warren M. Grill - 通讯作者:
Warren M. Grill
Simultaneous DBS local evoked potentials in the subthalamic nucleus and globus pallidus during local and remote deep brain stimulation
- DOI:
10.1016/j.brs.2023.01.680 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Stephen L. Schmidt;Jahrane Dale;Dennis A. Turner;Warren M. Grill - 通讯作者:
Warren M. Grill
Abstract #84: Transcranial Magnetic Stimulation of Morphologically-Accurate, Layer-Specific Model Neurons in Realistic Head Geometry
- DOI:
10.1016/j.brs.2018.12.091 - 发表时间:
2019-03-01 - 期刊:
- 影响因子:
- 作者:
Aman S. Aberra;Boshuo Wang;Warren M. Grill;Angel V. Peterchev - 通讯作者:
Angel V. Peterchev
Technology of deep brain stimulation: current status and future directions
深部脑刺激技术:现状与未来方向
- DOI:
10.1038/s41582-020-00426-z - 发表时间:
2020-11-26 - 期刊:
- 影响因子:33.100
- 作者:
Joachim K. Krauss;Nir Lipsman;Tipu Aziz;Alexandre Boutet;Peter Brown;Jin Woo Chang;Benjamin Davidson;Warren M. Grill;Marwan I. Hariz;Andreas Horn;Michael Schulder;Antonios Mammis;Peter A. Tass;Jens Volkmann;Andres M. Lozano - 通讯作者:
Andres M. Lozano
Warren M. Grill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Warren M. Grill', 18)}}的其他基金
NeuroSimNIBS: Integrated electric field and neuronal response modeling for transcranial electric and magnetic stimulation
NeuroSimNIBS:用于经颅电和磁刺激的集成电场和神经元反应模型
- 批准号:
10611858 - 财政年份:2022
- 资助金额:
$ 110.28万 - 项目类别:
NeuroSimNIBS: Integrated electric field and neuronal response modeling for transcranial electric and magnetic stimulation
NeuroSimNIBS:用于经颅电和磁刺激的集成电场和神经元反应模型
- 批准号:
10345305 - 财政年份:2022
- 资助金额:
$ 110.28万 - 项目类别:
Modeling Activation and Block of Autonomic Nerves for Analysis and Design
自主神经激活和阻滞建模用于分析和设计
- 批准号:
10187336 - 财政年份:2017
- 资助金额:
$ 110.28万 - 项目类别:
Modeling Activation and Block of Autonomic Nerves for Analysis and Design
自主神经激活和阻滞建模用于分析和设计
- 批准号:
10003460 - 财政年份:2017
- 资助金额:
$ 110.28万 - 项目类别:
Modeling Activation and Block of Autonomic Nerves for Analysis and Design
自主神经激活和阻滞建模用于分析和设计
- 批准号:
10461325 - 财政年份:2017
- 资助金额:
$ 110.28万 - 项目类别:
Recording Evoked Potentials for Closed-Loop DBS
记录闭环 DBS 诱发电位
- 批准号:
8852410 - 财政年份:2014
- 资助金额:
$ 110.28万 - 项目类别:
Recording Evoked Potentials for Closed-Loop DBS
记录闭环 DBS 诱发电位
- 批准号:
8720076 - 财政年份:2012
- 资助金额:
$ 110.28万 - 项目类别:
Recording Evoked Potentials for Closed-Loop DBS
记录闭环 DBS 诱发电位
- 批准号:
8501710 - 财政年份:2012
- 资助金额:
$ 110.28万 - 项目类别:
Recording Evoked Potentials for Closed-Loop DBS
记录闭环 DBS 诱发电位
- 批准号:
8335751 - 财政年份:2012
- 资助金额:
$ 110.28万 - 项目类别:
相似海外基金
FORTIFY - From Molecular Physiology to Biophysics of the Glymphatic System: a Regulatory Role for Aquaporin-4
FORTIFY - 从类淋巴系统的分子生理学到生物物理学:Aquaporin-4 的调节作用
- 批准号:
EP/Y023684/1 - 财政年份:2024
- 资助金额:
$ 110.28万 - 项目类别:
Research Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
- 批准号:
EP/Y000501/1 - 财政年份:2024
- 资助金额:
$ 110.28万 - 项目类别:
Fellowship
Biophysics of the brain’s waste disposal system: Understanding why we sleep
大脑废物处理系统的生物物理学:了解我们为什么睡觉
- 批准号:
DP230101113 - 财政年份:2023
- 资助金额:
$ 110.28万 - 项目类别:
Discovery Projects
CAREER: Surfactant Proteins that Stabilize Biomolecular Condensates: From Biophysics to Biomaterials for Biomanufacturing
职业:稳定生物分子缩合物的表面活性剂蛋白:从生物物理学到生物制造的生物材料
- 批准号:
2238914 - 财政年份:2023
- 资助金额:
$ 110.28万 - 项目类别:
Continuing Grant
Biophysics of liquid droplets in bacteria
细菌中液滴的生物物理学
- 批准号:
2887560 - 财政年份:2023
- 资助金额:
$ 110.28万 - 项目类别:
Studentship
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
- 批准号:
2150396 - 财政年份:2023
- 资助金额:
$ 110.28万 - 项目类别:
Continuing Grant
Center: REU Site: Interdisciplinary Research Opportunities in Biophysics
中心:REU 地点:生物物理学的跨学科研究机会
- 批准号:
2242779 - 财政年份:2023
- 资助金额:
$ 110.28万 - 项目类别:
Standard Grant
Targeted Infusion Project: Creation of a Biophysics minor program for STEM success
有针对性的输液项目:为 STEM 成功创建生物物理学辅修课程
- 批准号:
2306506 - 财政年份:2023
- 资助金额:
$ 110.28万 - 项目类别:
Standard Grant














{{item.name}}会员




