GEMRA: Geriatric Emergency Medicine Risk Prediction Model for Return VisitAdmissions
GEMRA:老年急诊医学回访住院风险预测模型
基本信息
- 批准号:10587202
- 负责人:
- 金额:$ 65.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAdmission activityAdultAssessment toolCaringCategoriesClassificationClinicalClinical DataCognitiveCommunicable DiseasesComplementComplexCritical CareDataDecision MakingDiagnosisDiseaseDisease ProgressionElderlyElectronic Health RecordEmergency CareEmergency Department patientEmergency MedicineEmergency SituationEmergency department screeningEmergency department visitEnsureEnvironmentEthnic OriginEtiologyEventFeasibility StudiesGeographyGeriatric AssessmentGoalsGuidelinesHealth systemHospital MortalityHospitalizationHospitalsHourInformaticsInterventionInterviewJudgmentLeadershipLinkMachine LearningManaged CareManualsMedicare claimMethodsModelingMorbidity - disease rateOperative Surgical ProceduresOutcomeOutputPatient AdmissionPatient NoncompliancePatient-Focused OutcomesPatientsPerformancePhysiciansPopulationPractice GuidelinesProcessRecommendationResearchRiskRisk AssessmentRisk FactorsScreening procedureSeveritiesSiteStructureSubgroupSurveysTechnologyTestingTimeTranslatingValidationVariantVisitVulnerable PopulationsWorkadverse outcomearmclinical careclinical decision supportclinical practicecomorbiditycomparativedesignexperiencehealth datahealth recordhigh riskimplementation designimplementation studyimprovedimproved outcomeinnovationinterdisciplinary collaborationmachine learning modelmachine learning predictionmortalitymultidisciplinarynovelpatient subsetspredict clinical outcomepredictive modelingprospectiveprototyperandomized, clinical trialsrisk mitigationrisk prediction modelscreeningsocial health determinantssocioeconomicssupport toolstheoriestoolusability
项目摘要
Summary:
At least 400 older adults a day are discharged from US emergency departments (EDs) and within 72 hours
experience a return ED visit resulting in hospital admission (RVA). Geriatric RVA have dramatically higher
morbidity and mortality than patients admitted to hospital on their initial ED visit. These outcomes, combined with
the clinical complexity of geriatric presentations, demonstrate a critical need for clinical decision support (CDS)
for ED discharge decisions and improved post-ED care management in older adults. National guidelines
recommend that all older adults receive formal risk screening in the ED. Existing geriatric ED risk assessment
tools lack predictive validity and are not designed to identify the multifactorial risk of an RVA event within 72
hours after ED discharge. Our long-term goal is to improve the outcomes of older adults using machine learning
models for clinical decision support (CDS) in emergency medicine. The goal of this study is to develop and
validate a machine learning model that predicts geriatric emergency medicine 72-hour RVA (GEMRA), and can
be used as a feasible ED CDS tool. In order to maximize the impact and generalizability of GEMRA across a
wide range of US ED environments and populations, the model input variables used will be clinical data collected
in the course of normal clinical care, and thus widely available in emergency health records (EHRs). GEMRA
will be developed and validated with data from five diverse hospitals across two health systems that span a wide
range of demographic, socioeconomic, and ethnic backgrounds. The study will be conducted by a closely
collaborating interdisciplinary team that includes emergency medicine, machine learning, and CDS experts, with
extensive experience in geriatric emergency medicine research as well as developing and evaluating
technological driven interventions to improve post-ED outcomes. Our preliminary work demonstrates that an
early machine learning model using 478 clinical data input variables can accurately identify ED patients at high
risk of RVA, outperforming an existing, unvalidated traditional RVA risk score that used six clinically derived risk
factors. Our specific aims include: (1) Optimize GEMRA through model refinement, validation with retrospective
data from unseen populations, as well as explanation of model performance variation across different clinical
subgroups; (2) Assess GEMRA's clinical value through prospective validation at three different hospitals,
comparing model performance to existing ED geriatric and RVA risk tools, as well as real-time clinician judgment;
(3) Engage multidisciplinary stakeholders in the design of both a GEMRA CDS prototype and a complementary
multidisciplinary clinical RVA risk assessment workflow; and subsequently evaluate the feasibility of these
products in ED clinical practice during a short-term pilot implementation study. Completion of these aims could
transform older adult post-ED risk screening, leveraging the computational power and scalability of machine
learning to identify patients at risk of early post-ED adverse outcomes. Subsequent implementation of GEMRA
CDS would inform risk-mitigating interventions, potentially impacting outcomes in this vulnerable population.
简介:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Arthur DeBlieux Steel其他文献
Peter Arthur DeBlieux Steel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 65.36万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 65.36万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 65.36万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 65.36万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 65.36万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 65.36万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 65.36万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 65.36万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 65.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 65.36万 - 项目类别:
Operating Grants














{{item.name}}会员




