Mechanism and Evolutionary Design of DNA Polymerase Clamp Loaders.
DNA 聚合酶夹钳装载机的机制和进化设计。
基本信息
- 批准号:10587243
- 负责人:
- 金额:$ 33.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseAmino Acid SequenceAmino AcidsArchitectureBacteriaBacteriophage T4BacteriophagesBase SequenceBehavior ControlBindingBiochemicalBiologicalBiological AssayCellsClosure by clampCommunicationComplexComputer ModelsConserved SequenceCouplingDNADNA BindingDNA biosynthesisDNA-Directed DNA PolymeraseDataDiffuseDiseaseDissociationEngineeringEscherichia coliEukaryotic CellEvolutionFamilyFamily memberGenetic EpistasisGenomeGenomicsGoalsHomologous GeneHumanHydrogen BondingHydrolysisLibrariesLinkMachine LearningMacromolecular ComplexesMapsMechanicsModelingMolecular MachinesMutagenesisMutationNatureOrganismOrthologous GenePatternPerformanceProcessPropertyProtein EngineeringProteinsResearchSet proteinSiteSlideSpeedStatistical ModelsStimulusSystemTestingTrainingTranscription InitiationTranscriptional RegulationVariantVirusWorkcell behaviordesignenhancer binding proteinexperimental studyfitnesshigh throughput screeninginsightmacromolecular assemblymembermutantnovelpreservationprotein complexprotein functionprotein oligomerresponsethree dimensional structuretransmission process
项目摘要
Project Summary/Abstract
Our proposed research seeks to understand the evolutionary origin and capacity to adapt of complex
molecular machines. It is challenging to comprehend how protein function, which depends on finely tuned
cooperativity between many components, is adapted and altered as an organism evolves. That is, how does
evolution satisfy the demands of high performance while maintaining the capacity for diversification and
adaptive specialization? To gain insight into these processes we plan to carry out high-throughput mutagenesis
and functional studies of a set of proteins involved in DNA replication.
High-speed DNA replication relies on proteins known as sliding clamps, which are proteins that encircle DNA
and can diffuse rapidly along the double-helix without dissociating from it. Because the sliding clamps form
closed circles, they do not readily associate with DNA on their own. Sliding clamps are opened and loaded
onto the start sites of DNA replication by ATP-driven molecular machines called clamp loaders. Clamp loaders
are members of an evolutionarily ancient family of ATP-dependent molecular machines called AAA+ ATPases,
which are a diverse set of proteins that transduce ATP binding and hydrolysis into mechanical action on
proteins. Because the DNA polymerase clamp-loaders are very well understood in terms of their three-
dimensional structures, they are excellent models for understanding intramolecular force transmission as well
as, more generally, the evolution of complex protein machines. The central goal of this proposal is to develop
an understanding of the mechanisms and evolutionary divergence of such complex protein machines, leading
to advances in our ability to predict and control the behaviors of cellular systems in both normal and disease
states.
The T4 bacteriophage (T4) is a small virus that infects the E. coli bacterium. The T4 genome encodes its own
DNA replication proteins, including a sliding clamp and clamp loader, proteins that are closely related to their
counterparts in eukaryotic cells, including human cells. We have developed and validated a powerful high-
throughput functional assay for the T4 bacteriophage (T4) clamp loader system. This platform opens up many
avenues to investigate mechanism and design principles in a proper biological context. We will use high-
throughput mutagenesis to map mutational sensitivity and allosteric coupling in the clamp loader and examine
the conservation of these properties in a very divergent AAA+ ATPase, a protein that controls transcription in
bacteria. We will use statistical models trained on genome sequences to infer the essential constraints on and
between amino acids in clamp loaders and test these inferences in a biological context. The aims of this
project represent a unified body of work to use new assay systems to understanding clamp loader and AAA+
mechanism, and to test the potential of emerging sequence-based models for understanding and engineering
complex macromolecular machines.
项目总结/摘要
我们提出的研究旨在了解复杂的进化起源和适应能力,
分子机器理解蛋白质的功能是具有挑战性的,这取决于微调的
许多组成部分之间的协同性随着有机体的进化而适应和改变。那就是,
进化满足了高性能的需求,同时保持了多样化的能力,
适应性专业化?为了深入了解这些过程,我们计划进行高通量诱变,
以及一组参与DNA复制的蛋白质的功能研究。
高速DNA复制依赖于被称为滑动夹的蛋白质,这是一种环绕DNA的蛋白质
并且可以沿着双螺旋快速扩散而不与其解离。
封闭的圆圈,它们本身不容易与DNA结合。滑动夹打开并加载
在DNA复制的起始位点上,由ATP驱动的分子机器,称为钳加载器。夹钳装载机
是一个进化上古老的ATP依赖性分子机器家族的成员,称为AAA+ ATP酶,
这是一组不同的蛋白质,它们使ATP结合并水解成机械作用,
proteins.因为DNA聚合酶钳装载器在它们的三个方面都很好地被理解-
三维结构,它们也是理解分子内力传递的极好模型
更普遍地说,是复杂蛋白质机器的进化。该提案的核心目标是发展
了解这种复杂蛋白质机器的机制和进化分歧,
我们预测和控制正常和疾病中细胞系统行为的能力的进步
states.
T4噬菌体(T4)是一种感染大肠杆菌的小病毒。大肠杆菌T4基因组编码自己的
DNA复制蛋白,包括滑动钳和钳装载器,与它们的DNA复制密切相关的蛋白质。
在真核细胞中的对应物,包括人类细胞。我们已经开发并验证了一个强大的高-
T4噬菌体(T4)夹加载系统的通量功能测定。这个平台开启了许多
在适当的生物学背景下研究机制和设计原则的途径。我们将使用高-
通量诱变,以绘制夹加载器中的突变敏感性和变构偶联,并检查
这些性质在一个非常不同的AAA+ ATP酶中的保守性,AAA + ATP酶是一种控制转录的蛋白质,
细菌我们将使用在基因组序列上训练的统计模型来推断基因组序列的基本约束,
并在生物学背景下测试这些推论。其目的是
项目代表了一个统一的工作主体,使用新的分析系统来了解夹钳装载器和AAA+
机制,并测试新兴的基于序列的模型的理解和工程的潜力
复杂的高分子机器
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN KURIYAN其他文献
JOHN KURIYAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN KURIYAN', 18)}}的其他基金
Evolution of proximal kinase network in T cells
T细胞中近端激酶网络的进化
- 批准号:
10428138 - 财政年份:2011
- 资助金额:
$ 33.71万 - 项目类别:
Evolution of proximal kinase network in T cells
T细胞中近端激酶网络的进化
- 批准号:
10615817 - 财政年份:2011
- 资助金额:
$ 33.71万 - 项目类别:
STRUCTURAL STUDIES OF CALCIUM/CALMODULIN DEPENDENT KINASE II AND E COLI REPLICA
钙/钙调蛋白依赖性激酶 II 和大肠杆菌复制品的结构研究
- 批准号:
7598158 - 财政年份:2007
- 资助金额:
$ 33.71万 - 项目类别:
STRUCTURAL STUDIES OF CALCIUM/CALMODULIN DEPENDENT KINASE II AND E COLI REPLICA
钙/钙调蛋白依赖性激酶 II 和大肠杆菌复制品的结构研究
- 批准号:
7370608 - 财政年份:2006
- 资助金额:
$ 33.71万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF DNA REPLICATION & CELLULAR SIGNALING: ONCOGENE
DNA 复制的晶体学研究
- 批准号:
6667808 - 财政年份:2002
- 资助金额:
$ 33.71万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF DNA REPLICATION & CELLULAR SIGNALING: ONCOGENE
DNA 复制的晶体学研究
- 批准号:
6491131 - 财政年份:2001
- 资助金额:
$ 33.71万 - 项目类别:
STRUCTURAL STUDIES OF DNA POLYMERASE PROCESSIVITY CLAMP LOADERS
DNA 聚合酶连续夹具加载器的结构研究
- 批准号:
6483499 - 财政年份:2001
- 资助金额:
$ 33.71万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF DNA REPLICATION & CELLULAR SIGNALING: ONCOGENE
DNA 复制的晶体学研究
- 批准号:
6339143 - 财政年份:2000
- 资助金额:
$ 33.71万 - 项目类别:
STRUCTURAL STUDIES OF DNA POLYMERASE PROCESSIVITY CLAMP LOADERS
DNA 聚合酶连续夹具加载器的结构研究
- 批准号:
6339323 - 财政年份:2000
- 资助金额:
$ 33.71万 - 项目类别: