Semiconductor Biomaterials to Speed Bone Healing: A Bioengineering-Driven Approach
半导体生物材料加速骨骼愈合:生物工程驱动的方法
基本信息
- 批准号:10587508
- 负责人:
- 金额:$ 47.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-03 至 2028-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalANGPT1 geneAccelerationAngiopoietinsAntioxidantsAutologousAutologous TransplantationBiocompatible MaterialsBiological AssayBiomaterials ResearchBiomedical EngineeringBiopolymersBlood VesselsBone DensityBone GrowthBone MatrixBone Morphogenetic ProteinsBone RegenerationBone TissueCellsCephalicChemicalsChemistryClinicalClinical TrialsCollagenComplexCysteineDataDefectDepositionDevelopmentDevicesEconomic BurdenElectronsEmergency department visitEndothelial CellsEnvironmentEnzyme-Linked Immunosorbent AssayExcisionFDA approvedFractureFutureGATA1 geneGelatinGeneral PopulationGoalsGrowth FactorHarvestHealth Care CostsHistologyHumanImplantIn VitroInflammationInjuryIonsLeadLesionMedical Care CostsMesenchymal Stem CellsMethodsMissionMorbidity - disease rateMorphologyMusculoskeletalNatural regenerationNitrogenOperative Surgical ProceduresOsteocalcinOsteogenesisPaste substancePathologicPatientsPhosphorusPolymersProcessProteinsRattusReactionRecombinantsRehabilitation therapyResearchResearch PersonnelRoentgen RaysScientistSemiconductorsSignal TransductionSiliconSiteSpeedStimulusStructureSwellingTestingTimeTissuesTitaniumTranslatingTranslationsTraumaUnited States National Institutes of HealthVascular Endothelial CellVascular Endothelial Growth FactorsVascularizationangiogenesisbiomaterial developmentbonebone healingbone repaircell motilityclinically relevantcraniofacialcraniofacial bonedensityeffective therapyfabricationhealinghypoxia inducible factor 1improvedin vivoinnovationmigrationnanocompositenanoparticlenuclear factor-erythroid 2osteogenicpreclinical studypromoterreconstructionrepairedsample fixationscaffoldsocioeconomicsstem cell differentiationvapor
项目摘要
Project Summary
Craniofacial trauma leads to over 10 million emergency room visits per year in the US that cause a vast socio-
economic burden. Unlike small defects, large complex defects arising from traumatic avulsive injuries or
pathologic lesion resection require planned reconstruction or secondary surgery to regain bony union. Yet, these
defects do not spontaneously heal and are known as “critical size defects” (CSD). Attempts to induce bone
formation by vascularized autologous grafts led to donor site morbidity and low harvest volume. Further,
recombinant human bone morphogenic protein (rhBMP2) growth factor used with autograft often produces
harmful inflammation and swelling post-surgery. Alternatively, titanium (Ti) fixation plates lend structural support
to bony fragments but lack bioactivity to speed healing. Moreover, clinically available mesoporous BioglassTM,
FDA-approved polymers, or composite pastes or putties lack needed strength and bioactivity for bone healing.
Our goal is to bioengineer new biomaterials that target healing mechanisms for rapid defect repair. Bone healing
requires rapid regeneration of dense biomineral and vascular tissue, which depends on antioxidant activity to
promote cell migration and osteogenesis by mesenchymal stem cells (MSC) and angiogenesis by endothelial
cells (EC). Our objective is to stimulate bone healing by (1) revealing biomaterial chemistries that target MSC
and EC antioxidant activity (2) atomistically layer these biomaterials as coatings on Ti devices to enhance bone
defect healing; and (3) use new nanoparticles (NPs) chemistries embedded in biopolymer scaffolds for rapid
defect healing. We created silicon oxy-nitro-phosphide (SiONPx) by chemical vapor deposition as new coatings
for Ti mesh and nanoparticles (SiONPx-np) in biopolymer scaffolds that release antioxidant ions (Si4+). We
hypothesize that SiONPx enhances dense bone and vascular tissue healing and rapid bone repair via enhanced
antioxidant activity to promote angiogenesis and osteogenesis. In Aim 1, we will study the effect of Si4+ on the
promotion of these antioxidants during MSCs osteogenesis and ECs angiogenesis. In Aim 2, we will determine
the effect of SiONPx coatings to stimulate antioxidant promoters to hasten the local bone healing environment.
In Aim 3, we will use SiONPx-np-biopolymer scaffolds to stimulate antioxidant promoters to promote cell
migration, angiogenesis, and osteogenesis into scaffold structures to hasten the healing process.
Our central innovation is the development of a new class of implantable and printable materials that can
accelerate healing of craniofacial bone defects. Once such materials/devices become clinically available, there
is the promise that a significant advancement will have been made toward their translation in patients needing
rapid healing of large bone defects or fractures. These results will have a positive impact in supporting future
clinical trials of new antioxidant materials on biomedical devices that can reduce patient healing time, reduce
medical care cost, and increase the quality of newly formed bone in large defects.
项目摘要
在美国,颅面创伤导致每年超过1000万的急诊室就诊,这造成了巨大的社会影响。
经济负担。与小的缺损不同,由创伤性撕脱伤或
病理性病变切除需要有计划的重建或二次手术以恢复骨愈合。然而这些
缺陷不能自发愈合,被称为“临界尺寸缺陷”(CSD)。尝试诱导骨
血管化自体移植物的形成导致供体部位发病率和低收获量。此外,本发明还
重组人骨形态发生蛋白(rhBMP-2)生长因子与自体移植物一起使用,
手术后的有害炎症和肿胀。或者,钛(Ti)固定板提供结构支撑
但缺乏加速愈合的生物活性。此外,临床上可用的介孔BioglassTM,
FDA批准的聚合物或复合糊剂或油灰缺乏骨愈合所需的强度和生物活性。
我们的目标是生物工程新的生物材料,目标是快速修复缺损的愈合机制。骨愈合
需要致密的生物矿物和血管组织的快速再生,这取决于抗氧化活性,
通过间充质干细胞(MSC)促进细胞迁移和成骨,通过内皮细胞促进血管生成,
细胞(EC)。我们的目标是通过(1)揭示靶向MSC的生物材料化学,
和EC抗氧化活性(2)原子层这些生物材料作为钛器械上的涂层,
缺陷愈合;以及(3)使用嵌入生物聚合物支架中的新纳米颗粒(NPs)化学物质,
缺陷愈合采用化学气相沉积法制备了氮氧磷化硅(SiONPx)涂层
用于释放抗氧化剂离子(Si 4+)的生物聚合物支架中的钛网和纳米颗粒(SiONPx-np)。我们
假设SiONPx通过增强骨愈合和血管组织愈合促进致密骨和血管组织愈合以及快速骨修复
抗氧化活性,以促进血管生成和骨生成。在目标1中,我们将研究Si 4+对
促进这些抗氧化剂在MSC成骨和EC血管生成。在目标2中,我们将确定
SiONPx涂层刺激抗氧化促进剂加速局部骨愈合环境的作用。
在目标3中,我们将使用SiONPx-np-生物聚合物支架来刺激抗氧化促进剂,以促进细胞增殖。
迁移、血管生成和骨生成进入支架结构以加速愈合过程。
我们的核心创新是开发一类新的可植入和可打印材料,
加速颅面骨缺损的愈合。一旦此类材料/器械在临床上可用,
是一个重大的进步,将已取得的承诺,对他们的翻译病人需要
大骨缺损或骨折的快速愈合。这些结果将对支持未来的发展产生积极影响。
在生物医学设备上进行新的抗氧化材料的临床试验,可以减少患者的愈合时间,
医疗保健成本,并提高大缺损处新形成骨的质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venu Gopal Varanasi其他文献
Venu Gopal Varanasi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venu Gopal Varanasi', 18)}}的其他基金
Silicon, a Novel Antioxidant Role in Bone Healing
硅,一种新的抗氧化剂,在骨愈合中发挥作用
- 批准号:
8772006 - 财政年份:2014
- 资助金额:
$ 47.95万 - 项目类别:
Improving Biomaterials from a Cellular Point of View
从细胞的角度改进生物材料
- 批准号:
7933243 - 财政年份:2009
- 资助金额:
$ 47.95万 - 项目类别:
Improving Biomaterials from a Cellular Point of View
从细胞的角度改进生物材料
- 批准号:
7473161 - 财政年份:2007
- 资助金额:
$ 47.95万 - 项目类别:
Improving Biomaterials from a Cellular Point of View
从细胞的角度改进生物材料
- 批准号:
8096604 - 财政年份:2007
- 资助金额:
$ 47.95万 - 项目类别:
Improving Biomaterials from a Cellular Point of View
从细胞的角度改进生物材料
- 批准号:
7240232 - 财政年份:2007
- 资助金额:
$ 47.95万 - 项目类别:
Improving Biomaterials from a Cellular Point of View
从细胞的角度改进生物材料
- 批准号:
7630506 - 财政年份:2007
- 资助金额:
$ 47.95万 - 项目类别: