Bayesian multivariate 3D spatial modeling for microbiome image analysis
用于微生物组图像分析的贝叶斯多元 3D 空间建模
基本信息
- 批准号:10586135
- 负责人:
- 金额:$ 61.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-04 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnalysis of VarianceArchitectureAreaAstronomyBacteriaBiologicalCalibrationCellsCharacteristicsClinicalCommunitiesComplexComputer softwareConfocal MicroscopyDataData SetDependenceDevelopmentDimensionsDiseaseEcologyEnvironmentEpitheliumEvaluationExhibitsFluorescent in Situ HybridizationForestryFree WillGoalsHealthHourHumanImageImage AnalysisImaging TechniquesJointsKnowledgeLabelLocationMapsMathematicsMeasuresMedical ImagingMethodsMicrobeMicrobial BiofilmsMicrobiologyModelingMultivariate AnalysisNutrientOralOral cavityOrganellesPathogenicityPatternPerformancePhysiologyPlayProcessRadialRecording of previous eventsRoleRunningSalivarySamplingSiteSliceSpatial DistributionStatistical MethodsStructureSurfaceSystemTaxonTaxonomyTechniquesTechnologyTestingThree-Dimensional ImageTongueVisualizationWorkbiomedical imagingcell typecommunity organizationscomputerized toolsdata integrationdisorder controldisorder preventionexperienceflexibilityhigh dimensionalityimprovedinnovationinsightmicrobialmicrobial communitymicrobiomemicrobiome researchmicroorganism interactionnoveloral biofilmorganizational structurescale upskillssoftware developmentspectrographstatisticsthree-dimensional modelingtooltwo-dimensionaluser-friendlyvirtual
项目摘要
Bacteria play critical beneficial and harmful roles in human health. Living in biofilm communities, one
species may attack, protect, or provide nutrients for neighboring species. These interactions determine the
community's net effects. Clarifying community organization is needed to understand how biofilm affects health.
To begin to meet this need, we developed an imaging technique, Combinatory Labeling and Spectral
Imaging Fluorescence in Situ Hybridization (CLASI-FISH), which displays how taxa's cells are located relative
to each other and to host cells. Yet biofilm's complex, three-dimensional (3D) architecture is poorly captured by
commonly used measures, such as intercellular distances or global biofilm volume for one or two taxa.
Here, we propose to extend Log Gaussian Cox process models (LGCP) to describe and test hypotheses
about human biofilm architecture, a novel application. Computational burden limits existing LGCP models for
geostatistical data to datasets with thousands of observations. These methods cannot be applied to biofilm
image data typically containing millions of observations. In preliminary work on two-dimensional (2D) biofilm
images, we have successfully scaled up multivariate LGCPs for six taxa. Estimated pairwise cross-correlation
functions differ in univariate analyses, which ignore other taxa's locations, versus multivariate analyses, which
leverage taxa's joint spatial distribution. We propose statistical innovations to address challenges raised by, but
not unique to, 3D biofilm images. Comparing biofilm across sample groups defined experimentally or based on
exposure history requires integrating data across subjects' images that lack true spatial correspondence.
Further, 3D spatial analyses have not been applied to multivariate data with millions of observations.
The goal of this proposal is therefore to build a Bayesian multivariate 3D LGCP that incorporates different
images—thereby allowing for non-spatial covariate factors—by applying a separate coordinate system to each
image. This proposal has three parts: (a) the development of novel multivariate 3D spatial analysis methods
(aims 1-3), (b) evaluation of a hypothesis regarding the spatial structure of human tongue microbiome (aim 4),
and (c) software development and dissemination, based on best practices (aim 5). The interdisciplinary team
has a deep skill set and experience developing Bayesian high-dimensional multivariate analysis methods.
The core innovation proposed is to integrate non-spatial covariates with multivariate spatial data across 3D
images lacking a common coordinate system. Sample accessibility and prior biological knowledge make the
oral cavity the best starting point to develop a flexible modeling framework that will allow testing of hypotheses
regarding microbial interactions and associations with host characteristics. This is a fundamental shift for how
such images will be analyzed, potentially providing new insight into the role of oral microbes. In advancing
capabilities for studying multivariate 3D spatial patterns across images, the mathematical adaptations and
software we develop will have the potential to yield a breakthrough technology.
细菌在人类健康中发挥着重要的有益和有害作用。生活在生物膜群落中,
物种可以攻击、保护或为邻近物种提供营养。这些相互作用决定了
社区的净效应。需要澄清社区组织,以了解生物膜如何影响健康。
为了开始满足这一需求,我们开发了一种成像技术,组合标记和光谱
成像荧光原位杂交(CLASI-FISH),显示分类群的细胞如何相对定位
以及宿主细胞之间的相互作用。然而,生物膜的复杂的三维(3D)结构很难被捕获,
通常使用的措施,如细胞间的距离或全球生物膜体积的一个或两个分类群。
在这里,我们建议扩展对数高斯考克斯过程模型(LGCP)来描述和检验假设
关于人类生物膜结构的新应用。计算负担限制了现有的LGCP模型,
地统计数据到具有数千个观测值的数据集。这些方法不能应用于生物膜
图像数据通常包含数百万个观测值。在二维(2D)生物膜的初步工作中,
图像中,我们已经成功地扩大了六个分类群的多元LGCP。估计成对互相关
函数在单变量分析中不同,单变量分析忽略了其他分类群的位置,而多变量分析
利用分类群的联合空间分布。我们提出统计创新,以应对挑战,但
这并不是3D生物膜图像所独有的。比较实验定义或基于以下的样品组中的生物膜
曝光历史需要整合缺乏真实空间对应性的受试者图像之间的数据。
此外,3D空间分析尚未应用于具有数百万观测值的多变量数据。
因此,本提案的目标是构建贝叶斯多变量3D LGCP,
图像-从而允许非空间协变量因子-通过将单独的坐标系应用于每个
形象该建议有三个部分:(a)开发新的多元3D空间分析方法
(aims(B)评价关于人舌微生物组的空间结构的假设(目的4),
以及(c)根据最佳做法开发和传播软件(目标5)。跨学科团队
拥有深厚的技能和开发贝叶斯高维多变量分析方法的经验。
提出的核心创新是将非空间协变量与3D中的多变量空间数据集成
缺乏共同坐标系的图像。样本可及性和先前的生物学知识使得
口腔是开发一个灵活的建模框架的最佳起点,该框架将允许对假设进行测试
关于微生物与宿主特征的相互作用和关联。这是一个根本性的转变,
这些图像将被分析,可能为口腔微生物的作用提供新的见解。在推进
跨图像研究多变量3D空间模式的能力,数学适应性,
我们开发的软件将有可能产生突破性的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KYU HA LEE其他文献
KYU HA LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KYU HA LEE', 18)}}的其他基金
Bayesian multivariate image analysis for studying oral microbiome biogeography
用于研究口腔微生物组生物地理学的贝叶斯多元图像分析
- 批准号:
10336589 - 财政年份:2021
- 资助金额:
$ 61.99万 - 项目类别:
Bayesian multivariate 3D spatial modeling for microbiome image analysis
用于微生物组图像分析的贝叶斯多元 3D 空间建模
- 批准号:
10401247 - 财政年份:2021
- 资助金额:
$ 61.99万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Research Grant