The Biochemistry of Clock Function in Fluctuating Environments
波动环境中时钟功能的生物化学
基本信息
- 批准号:10586111
- 负责人:
- 金额:$ 31.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino Acid SequenceAnacystisnidulansBacteriaBacterial ModelBar CodesBehaviorBehavioralBiochemicalBiochemistryBiological AssayBiological ClocksCell physiologyCellsCircadian RhythmsClock proteinCommunicationCompensationComplexCoupledCouplingCyanobacteriumDNA sequencingDarknessDataData SetDefectDependenceEnvironmentFeedbackFunctional disorderGene ExpressionGenesGenetic TranscriptionGoalsGrowthHealthHourHumanImpaired healthImpairmentIn VitroJet Lag SyndromeKineticsLibrariesLifeLightLinkLongevityMarkov ChainsMeasurementMeasuresMemoryMetabolicMetabolismModelingModernizationMutagenesisMutationOrganismOutputPathway interactionsPeriodicityPhase response curvesPhenotypePhosphorylationPoint MutationProcessPropertyProteinsReactionRecording of previous eventsResearchRestScanningSignal PathwaySignal TransductionSiteSystemTemperatureTestingTimeTubeWorkcircadiancircadian pacemakerfitnessgenetic analysisin vivolarge datasetsmathematical modelmodel organismmutantnovelprotein complexprotein purificationreconstitutionresponseshift workstoichiometrytranscriptome sequencing
项目摘要
Project Summary
Circadian rhythms are daily oscillations in behavior with a nearly 24-hour period that are generated by
an internal biological clock. Across many organisms, health and fitness are impaired when the circadian
clock does not appropriately synchronize with the daily cycles in the external environment. It is thus
critical to understand how clocks respond to challenging fluctuating environments with intermittent or
irregular inputs that are typical of modern life. This problem is conceptually challenging because
circadian clocks are complex systems. In general, there is a core oscillator consisting of biochemical
circuitry that generates a rhythmic daily signal, and the timing of this rhythm can be adjusted by input
signals that communicate information about the environment to the oscillator. However, this oscillator
is also embedded in the rest of cellular physiology, and so its response to a changing environment is
likely contingent on the status of metabolism and other signaling pathways. We are using the bacterial
model organism Synechococcus elongatus to crack the problem of clock-environment interaction
because this organism has the remarkable feature that the core oscillator can be reconstituted in vitro
using purified proteins. We will thus use a reductionistic approach to build up to an integrated
mathematical model of clock function in the intact cell when subject to environmental fluctuations. In
Aim 1, we will study the purified test tube oscillator, collecting a large data set of kinetic measurements
on the core clock proteins at various temperatures, metabolite concentrations, and protein
stoichiometries. Using advanced statistical approaches, we will then constrain a model of elementary
reactions to uncover how temperature compensation, metabolic sensing, and entrainment function in
the core oscillator. In Aim 2, we will study how the clock shifts in response to environmental fluctuations
in the living cell. Here we will use a novel assay to isolate the history-dependence of clock sensitivity
that is absent from the core oscillator. We will then use a genetic analysis to find the key pathways
used to modulate clock sensitivity in vivo. These data will then be incorporated into a expanded
mathematical model that describes the function of the clock in vivo when environmental conditions
fluctuate. In Aim 3, we will develop a deep mutagenic scanning approach, to find the clock phenotype
and competitive growth defects of 10,000s of point mutations in the clock genes simultaneously. This
will not only allow us to discover critical interaction sites on the clock proteins, but also to obtain a
comprehensive list of period mutants and mutants that disrupt temperature compensation. Because
this assay is based on the transcriptional feedback loops ubiquitous in circadian clocks, it can be
generally applied to other clock systems as well.
项目摘要
昼夜节律是行为的每日振荡,近24小时的时间是由
内部生物钟。在许多生物体中,当昼夜节律时,健康和健身会受到损害
时钟与外部环境中的每日周期没有适当同步。因此
了解时钟如何应对挑战性波动环境的响应至关重要
现代生活典型的不规则投入。这个问题在概念上具有挑战性,因为
昼夜节律是复杂的系统。通常,有一个由生化的核心振荡器
产生节奏每日信号的电路,并且可以通过输入来调整此节奏的时间
将有关环境信息传达给振荡器的信息的信号。但是,这个振荡器
还嵌入了细胞生理的其余部分中,因此其对环境不断变化的反应是
可能取决于代谢和其他信号通路的状态。我们正在使用细菌
模型有机体元素弹药破解了时钟 - 环境相互作用的问题
因为该生物具有一个显着的特征,即可以在体外重构核心振荡器
使用纯化的蛋白质。因此,我们将使用简化的方法来建立综合的
当受到环境波动的影响时,完整单元格中时钟功能的数学模型。在
AIM 1,我们将研究纯化的试管振荡器,收集大量的动力学测量数据集
在各种温度,代谢物浓度和蛋白质上的核心时钟蛋白上
石化的图表。使用高级统计方法,我们将约束基本模型
发现温度补偿,代谢感应和夹带功能的反应
核心振荡器。在AIM 2中,我们将研究时钟如何随着环境波动而变化
在活细胞中。在这里,我们将使用一种新颖的测定法来隔离时钟灵敏度的历史依赖性
核心振荡器不存在。然后,我们将使用遗传分析找到关键途径
用于在体内调节时钟灵敏度。然后将这些数据纳入扩展
在环境条件下描述时钟在体内功能的数学模型
波动。在AIM 3中,我们将开发一种深诱变扫描方法,以找到时钟表型
同时,时钟基因中10,000点突变的竞争增长缺陷。这
我们不仅会允许我们发现时钟蛋白上的关键交互位点,而且还可以获得一个
破坏温度补偿的周期突变体和突变体的全面列表。因为
该测定基于昼夜节律中无处不在的转录反馈循环,它可以是
通常也应用于其他时钟系统。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kalman-like Self-Tuned Sensitivity in Biophysical Sensing.
- DOI:10.1016/j.cels.2019.08.008
- 发表时间:2019-11-27
- 期刊:
- 影响因子:9.3
- 作者:
- 通讯作者:
The circadian clock ensures successful DNA replication in cyanobacteria.
- DOI:10.1073/pnas.2022516118
- 发表时间:2021-05-18
- 期刊:
- 影响因子:11.1
- 作者:Liao Y;Rust MJ
- 通讯作者:Rust MJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Rust其他文献
Michael Rust的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Rust', 18)}}的其他基金
The Biochemistry of Clock Function in Fluctuating Environments
波动环境中时钟功能的生物化学
- 批准号:
10582255 - 财政年份:2020
- 资助金额:
$ 31.92万 - 项目类别:
The Biochemistry of Clock Function in Fluctuating Environments
波动环境中时钟功能的生物化学
- 批准号:
10361500 - 财政年份:2020
- 资助金额:
$ 31.92万 - 项目类别:
Coupling between Circadian Rhythms and Metaboilsm in Cyanobacteria
蓝藻昼夜节律与代谢之间的耦合
- 批准号:
8897414 - 财政年份:2013
- 资助金额:
$ 31.92万 - 项目类别:
Coupling between Circadian Rhythms and Metaboilsm in Cyanobacteria
蓝藻昼夜节律与代谢之间的耦合
- 批准号:
8560513 - 财政年份:2013
- 资助金额:
$ 31.92万 - 项目类别:
Coupling between Circadian Rhythms and Metaboilsm in Cyanobacteria
蓝藻昼夜节律与代谢之间的耦合
- 批准号:
9116893 - 财政年份:2013
- 资助金额:
$ 31.92万 - 项目类别:
Coupling between Circadian Rhythms and Metaboilsm in Cyanobacteria
蓝藻昼夜节律与代谢之间的耦合
- 批准号:
8744295 - 财政年份:2013
- 资助金额:
$ 31.92万 - 项目类别:
Coupling between Circadian Rhythms and Metaboilsm in Cyanobacteria
蓝藻昼夜节律与代谢之间的耦合
- 批准号:
9325327 - 财政年份:2013
- 资助金额:
$ 31.92万 - 项目类别:
相似国自然基金
基于祖先序列重构的D-氨基酸解氨酶的新酶设计及分子进化
- 批准号:32271536
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
模板化共晶聚合合成高分子量序列聚氨基酸
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模板化共晶聚合合成高分子量序列聚氨基酸
- 批准号:22201105
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于祖先序列重构的D-氨基酸解氨酶的新酶设计及分子进化
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
C-末端40个氨基酸插入序列促进细菌脂肪酸代谢调控因子FadR转录效率的机制研究
- 批准号:82003257
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 31.92万 - 项目类别:
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
- 批准号:
10555093 - 财政年份:2023
- 资助金额:
$ 31.92万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 31.92万 - 项目类别:
Asymmetric Single-Chain MspA nanopores for electroosmotic stretching and sequencing proteins
用于电渗拉伸和蛋白质测序的不对称单链 MspA 纳米孔
- 批准号:
10646810 - 财政年份:2023
- 资助金额:
$ 31.92万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 31.92万 - 项目类别: