Hippo-mediated control of growth and regeneration in the inner ear sensory organs
河马介导的内耳感觉器官生长和再生的控制
基本信息
- 批准号:10588024
- 负责人:
- 金额:$ 43.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAdultAuditoryAuditory Brainstem ResponsesBasic ScienceBindingCell CycleCell Cycle ProgressionCell MaturationCell ProliferationCell divisionCellsChromatinCochleaCyclin-Dependent Kinase InhibitorDataDeteriorationDiphtheria ToxinDyesEarEmbryoEnzymesEpigenetic ProcessEquilibriumEvoked PotentialsFishesGene ActivationGene ExpressionGenesGeneticGenetic TranscriptionGoalsGrowthHairHair CellsHealthHearingImmunohistochemistryIn VitroInjectionsInjuryKnowledgeLabelLabyrinthLinkMammalsMeasurementMeasuresMediatingMethodsMissionMitoticMolecularMolecular AnalysisMonitorMusNatural regenerationNeonatalOrganOrgan of CortiPathway interactionsPharmaceutical PreparationsPhenotypePhosphotransferasesPopulationProcessProliferatingRNAReceptor GeneRecoveryRecovery of FunctionRegimenRepressionResearchResidual stateResistanceScanning Electron MicroscopySensorySensory HairSensory ReceptorsSignal TransductionStructure of posterior semicircular canalSupporting CellSystemTechniquesTestingTherapeuticTimeTranscription CoactivatorUnited States National Institutes of HealthUtricle structureVertebratesVestibular Hair CellsWorkXCL1 genecyclin-dependent kinase inhibitor 1Bdrug withdrawalexperimental studyhair cell regenerationin vitro regenerationin vivoin vivo regenerationinhibitorinnovationmultiple omicsnew therapeutic targetpharmacologicpostmitoticpostnatalpreventprogenitorrestorationsmall molecule inhibitorstem cellssynergismtooluptake
项目摘要
Project Summary
The main way in which non-mammalian vertebrates, such as fish, restore sensory hair cells is through
proliferation and differentiation of the residual population of supporting cells. In contrast, supporting cells lose
the capacity to proliferate postnatally in mammals, and the molecular machinery preventing cell cycle reentry
remains poorly understood.
Our work has established that Hippo signaling serves as a major repressive mechanism that blocks
supporting cell proliferation and plasticity in the mammalian inner ear. In three Aims, we will identify the molecular
mechanism by which Hippo inhibition promotes mitotic sensory receptor regeneration in the adult utricle explants
(Aim 1); assess whether reversible pharmacologic inactivation of Hippo signaling stimulates bona fide vestibular
hair cell regeneration to support functional recovery in vivo (Aim 2); and assess the pathway’s interaction with
the cell cycle inhibitor p27Kip1, specific to the organ of Corti, in the adult inner ear in vivo (Aim 3). The long-term
goal of this proposal is to identify therapeutic strategies for hearing and balance restoration through controlled
manipulation of the Hippo pathway.
Due to its relatively recent discovery, study of the Hippo pathway in the inner ear is innovative in itself.
Furthermore, our group has pioneered this field and developed several specialized research tools to aid the
study of the pathway in the inner ear. Most notably, we identified the first small-molecule inhibitor of Lats kinases
– the core enzymes in Hippo signaling – that we show to potently induce supporting cell proliferation and the
initial stages of hair cell regeneration in vitro and in vivo. We also optimized posterior semicircular canal approach
for LKI delivery into the inner ear and utilize several cutting-edge genetic and epigenetic techniques (e.g
multiome sequencing, CUT&RUN).
The proposed basic research is significant because understanding the molecular machinery blocking cell
cycle reentry in the inner ear may determine new therapeutic targets for induction of hair cell regeneration.
Remarkably, we demonstrate that brief pharmacologic inhibition of Lats kinases induces supporting cell
proliferation in the adult utricle, allowing progeny to re-exit the cell cycle and spontaneously upregulate sensory
receptor genes upon drug withdrawal. Collectively our data show that temporal inactivation of Hippo signaling is
sufficient to promote the initial stages of hair cell regeneration through supporting cell division – a process thought
to be permanently suppressed in the adult mammalian inner ear.
项目摘要
非哺乳类脊椎动物,如鱼类,恢复感觉毛细胞的主要途径是通过
支持细胞的剩余群体的增殖和分化。相反,支持细胞失去了
哺乳动物出生后增殖的能力,以及阻止细胞周期重新进入的分子机制
仍然知之甚少。
我们的工作已经确定,河马信号作为一个主要的抑制机制,阻止
支持哺乳动物内耳中的细胞增殖和可塑性。在三个目标中,我们将识别分子
Hippo抑制促进成年椭圆果外植体中有丝分裂感觉受体再生的机制
(Aim 1);评估Hippo信号传导的可逆药理学失活是否刺激真正的前庭神经系统。
毛细胞再生以支持体内功能恢复(目标2);并评估该途径与
细胞周期抑制剂p27 Kip 1,特异性Corti器官,在成年内耳体内(目的3)。长期
该提案的目标是确定通过控制听力和平衡恢复的治疗策略,
操纵河马通路
由于其相对较新的发现,对内耳中Hippo通路的研究本身就是创新的。
此外,我们的团队开创了这一领域,并开发了几种专门的研究工具,以帮助
内耳通路的研究。最值得注意的是,我们发现了第一个Lats激酶的小分子抑制剂,
- Hippo信号传导中的核心酶-我们显示其有效地诱导支持细胞增殖,
体外和体内毛细胞再生的初始阶段。我们还优化了后半规管入路
并利用几种尖端的遗传和表观遗传技术(例如
多基因组测序,CUT&RUN)。
所提出的基础研究是有意义的,因为了解分子机制阻止细胞
内耳中的周期再进入可以确定用于诱导毛细胞再生的新的治疗靶点。
值得注意的是,我们证明了Lats激酶的短暂药理学抑制诱导支持细胞
在成年胞果中增殖,允许后代重新退出细胞周期并自发上调感觉神经元的表达。
药物戒断后的受体基因。总的来说,我们的数据表明,海马信号的暂时失活是
足以通过支持细胞分裂促进毛细胞再生的初始阶段-一个过程思想
在成年哺乳动物内耳中被永久抑制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ksenia Gnedeva其他文献
Ksenia Gnedeva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 43.15万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 43.15万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 43.15万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 43.15万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 43.15万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 43.15万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 43.15万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 43.15万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 43.15万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 43.15万 - 项目类别:
Research Grant