Circulating Genomic Determinants of Treatment Failure in Hodgkin Lymphoma
霍奇金淋巴瘤治疗失败的循环基因组决定因素
基本信息
- 批准号:10588252
- 负责人:
- 金额:$ 64.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-04 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:Antibody-drug conjugatesBiological AssayBiological MarkersBiotechnologyBloodCancer PatientCellsClinicalCytotoxic ChemotherapyDNA Sequence AlterationDependenceDevelopmentDiagnosisDiseaseDisease remissionDoctor of MedicineDoctor of PhilosophyEventFailureFrequenciesGeneticGenomicsGenotypeGoalsHeterogeneityHodgkin DiseaseHumanHuman Herpesvirus 4IL4 geneImageIndividualInterleukin 4 ReceptorMalignant NeoplasmsMeasurableMeasurementMeasuresMetabolicMethodsModelingMolecularMonitorMutationNatureOutcomePathologicPathway interactionsPatientsPhenotypePlasmaPositron-Emission TomographyPrecision therapeuticsPrediction of Response to TherapyPropertyPublic HealthRecurrenceRegimenRiskRisk FactorsSTAT6 geneSignal TransductionSomatic MutationStereotypingTechniquesTestingTherapeuticTherapeutically TargetableToxic effectToxicity due to chemotherapyTreatment EfficacyTreatment FailureTreatment outcomeTumor TissueTumor VolumeVariantViral GenomeWorkbiological heterogeneitycancer cellcancer imagingclinical biomarkersclinical heterogeneitycohortcytokinedisorder riskexomeexperimental studygain of functiongenetic varianthigh riskimaging modalityimaging studyimmune checkpoint blockadeimprovedindexinginduced pluripotent stem cellinnovationinsightintegration siteliquid biopsymolecular markerneoplastic cellnovelnovel therapeutic interventionoutcome predictionpersonalized medicinepersonalized risk predictionpre-clinicalprecision medicineprognosticationresponseresponse biomarkerrisk predictionrisk prediction modeltargeted treatmenttherapeutic targettherapy outcometumortumor DNA
项目摘要
PROJECT SUMMARY/ABSTRACT
PIs: Ash Alizadeh, M.D./Ph.D. & Maximilian Diehn, M.D./Ph.D.
Classical Hodgkin lymphoma (HL) is among the most curable human malignancies. However,
strategies to personalize HL therapies and to minimize long-term attendant toxicities of
chemotherapy are currently limited to baseline risk factors and imaging. This is due to our
incomplete understanding of targetable pathways and lack of good biomarkers. Because of the
low fraction of malignant cells in tumor tissue and consecutive technical challenges, the
landscape of HL is not well-defined.
Our long-term goal is to study the ability of baseline and dynamic risk factors, including genetic
mutations, circulating tumor DNA (ctDNA) and imaging studies (PET), to accurately predict
treatment outcomes in HL patients, and to provide a basis for individualized precision medicine.
Our central hypothesis is that clinical and biological heterogeneity in HL reflects distinct
genomic features that are noninvasively measurable using ultrasensitive ctDNA techniques, and
that refining early response assessment integrating interim PET and blood based methods
improves prognostication. We will test our hypotheses via three specific aims: (1) To
noninvasively define the genomic landscape of somatic variations in HL, and to determine the
relationship of genomic variants with biological heterogeneity at initial disease presentation, (2)
To associate molecular features at baseline and molecular response with ultimate therapeutic
outcome, and to integrate clinical and molecular biomarkers in a personalized dynamic risk
model for predicting HL outcomes, and (3) To functionally characterize novel mutations in
Interleukin-4 receptor (IL4R) resulting in gain-of-function IL4/STAT6 signaling, and to test the
utility of precision therapeutic targeting of these mutations.
If successful, our project will lead to novel ways to select better therapies for patients at highest
risk of failure, and to minimize toxicity for the majority of patients responding well to standard
therapy. Our innovative approach, in which we will combine blood-based methods for
genotyping and disease monitoring with imaging studies, will provide the basis for a
personalized treatment approach in HL.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ash Arash Alizadeh其他文献
Ash Arash Alizadeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ash Arash Alizadeh', 18)}}的其他基金
Circulating Genomic Determinants of Treatment Failure in Hodgkin Lymphoma
霍奇金淋巴瘤治疗失败的循环基因组决定因素
- 批准号:
10157567 - 财政年份:2021
- 资助金额:
$ 64.09万 - 项目类别:
Circulating Genomic Determinants of Treatment Failure in Hodgkin Lymphoma
霍奇金淋巴瘤治疗失败的循环基因组决定因素
- 批准号:
10364663 - 财政年份:2021
- 资助金额:
$ 64.09万 - 项目类别:
Analysis of urine tumor nucleic acids for detection and personalized surveillance of bladder cancer
尿液肿瘤核酸分析用于膀胱癌的检测和个性化监测
- 批准号:
10656481 - 财政年份:2020
- 资助金额:
$ 64.09万 - 项目类别:
Molecularly-based outcome and toxicity prediction after radiotherapy for lung cancer
肺癌放疗后基于分子的结果和毒性预测
- 批准号:
10611910 - 财政年份:2020
- 资助金额:
$ 64.09万 - 项目类别:
Analysis of urine tumor nucleic acids for detection and personalized surveillance of bladder cancer
尿液肿瘤核酸分析用于膀胱癌的检测和个性化监测
- 批准号:
10176428 - 财政年份:2020
- 资助金额:
$ 64.09万 - 项目类别:
Molecularly-based outcome and toxicity prediction after radiotherapy for lung cancer
肺癌放疗后基于分子的结果和毒性预测
- 批准号:
10224926 - 财政年份:2020
- 资助金额:
$ 64.09万 - 项目类别:
Analysis of urine tumor nucleic acids for detection and personalized surveillance of bladder cancer
尿液肿瘤核酸分析用于膀胱癌的检测和个性化监测
- 批准号:
10425326 - 财政年份:2020
- 资助金额:
$ 64.09万 - 项目类别:
Molecularly-based outcome and toxicity prediction after radiotherapy for lung cancer
肺癌放疗后基于分子的结果和毒性预测
- 批准号:
10397617 - 财政年份:2020
- 资助金额:
$ 64.09万 - 项目类别:
A Genomic Framework for Molecular Risk Prediction & Individualized Lymphoma Therapy
分子风险预测的基因组框架
- 批准号:
10454960 - 财政年份:2019
- 资助金额:
$ 64.09万 - 项目类别:
A Genomic Framework for Molecular Risk Prediction & Individualized Lymphoma Therapy
分子风险预测的基因组框架
- 批准号:
10675738 - 财政年份:2019
- 资助金额:
$ 64.09万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 64.09万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 64.09万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 64.09万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 64.09万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 64.09万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 64.09万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 64.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 64.09万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 64.09万 - 项目类别:
Postdoctoral Fellowships