A Comprehensive Strategy to Detect Glaucoma Worsening Earlier and With Fewer Tests
通过更少的测试及早发现青光眼恶化的综合策略
基本信息
- 批准号:10589048
- 负责人:
- 金额:$ 19.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccountingAffectAreaBayesian AnalysisBlindnessCalendarClinicalClinical DataCoupledDataData ScienceData SetDetectionDiagnostic testsDiseaseEducational workshopEffectivenessEthicsEyeFutureGlaucomaGoalsHealthcareHealthcare SystemsImageKnowledgeLearningMachine LearningMeasuresMentored Patient-Oriented Research Career Development AwardMentorsMethodsModelingMonitorOptical Coherence TomographyOutcomePapillaryPatientsPatternPerformancePhysiologic Intraocular PressurePopulationPublic HealthPythonsResearchResearch ActivityResearch PersonnelResearch ProposalsResource AllocationResourcesRiskSignal TransductionStreamStructureTechniquesTestingThickTimeTrainingVisitVisual AcuityVisual FieldsWorkclinical decision-makingcompare effectivenessconvolutional neural networkdeep learningdeep learning modeldemographicsfield studygenerative adversarial networkhigh riskimprovedlongitudinal databasemachine learning methodmachine learning modelmeetingsmodel designmultilevel analysisneural network architecturepredictive modelingpreservationpreventprogramsresponsible research conductretinal nerve fiber layerrisk predictionskillstoolvisual opticswasting
项目摘要
ABSTRACT
This is an application for a K23 Mentored Patient-Oriented Research Career Development Award. The
goal of this proposal is to provide the candidate with the advanced skills needed to establish an independent
research program in the area of glaucoma diagnostic testing with special expertise in test error correction and
predictive modeling of future glaucoma outcomes. To facilitate this long-term goal, in the current proposal, the
candidate’s main research goal is to reduce the time and number of tests necessary to detect glaucoma
worsening by (1) correcting for errors in previously obtained visual field (VF) and peripapillary optical
coherence tomography (OCT) tests by using multilevel models with Bayesian analysis (MLB) and generative
adversarial networks (GAN) (2) stratifying eyes at high and low risk for rapid glaucoma worsening at the
baseline clinical visit using deep convolutional neural networks (DCNN). These aims are based on high quality
preliminary data which show that: (1) the effect of VF reliability metrics and OCT signal strength on test error
can be quantified and thus corrected for and (2) machine learning methods can predict risk of future VF
progression with fair accuracy with baseline visit VF data alone and therefore adding structural (OCT) and
clinical information from the baseline visit is likely to improve model accuracy. The main hypotheses of the
proposed research aims are (1) correcting for test errors with MLB and GAN will reduce the time needed to
detect worsening by 10 and 20% respectively (2) combining baseline visit structural (OCT), functional (VF) and
clinical data as inputs into DCNNs will allow us to achieve an area under the receiver operating curve of at
least 0.8 at predicting the risk of future rapid glaucoma worsening. The candidate proposes a comprehensive
training plan, combining formal coursework, meetings, seminars and workshops overseen by his diverse group
of mentors. Specific training goals include: (1) Receiving training in multi-level regression modeling and
Bayesian analysis techniques. (2) Becoming adept at data science with a special emphasis on learning
Python for data extraction, manipulation and analysis. (3) Furthering knowledge of machine learning
techniques with a specific emphasis on deep learning including DCNNs and GANs. (4) Continuing training in
the ethical and responsible conduct of research. The training plan will be executed in coordination with the set
of research activities mentioned above. Results from this research proposal will be used to develop a
subsequent R01 research proposal that will facilitate the candidate’s transition to an independent researcher.
摘要
这是一个K23指导以患者为导向的研究职业发展奖的应用程序。的
本提案的目标是为候选人提供建立独立的
青光眼诊断测试领域的研究项目,具有测试错误纠正和
未来青光眼结果的预测模型。为了促进这一长期目标,在目前的提案中,
候选人的主要研究目标是减少青光眼检测所需的时间和数量
通过(1)校正先前获得的视野(VF)和视乳头周围光学
相干断层扫描(OCT)测试,使用贝叶斯分析(MLB)和生成的多层次模型
对抗性网络(GAN)(2)对快速青光眼恶化的高风险和低风险眼睛进行分层,
使用深度卷积神经网络(DCNN)进行基线临床访问。这些目标是基于高质量
初步数据表明:(1)VF可靠性指标和OCT信号强度对测试误差的影响
可以量化,从而纠正(2)机器学习方法可以预测未来VF的风险
仅基线访视VF数据的进展具有相当的准确性,因此增加了结构性(OCT)和
来自基线访视的临床信息可能会提高模型的准确性。的主要假设
建议的研究目标是:(1)用MLB和GAN校正测试错误将减少所需的时间,
分别检测到恶化10%和20%(2)结合基线访视结构(OCT)、功能(VF)和
作为DCNN输入的临床数据将使我们能够在接受者工作曲线下面积达到
在预测未来青光眼快速恶化的风险时至少为0.8。候选人提出了一个全面的
培训计划,结合正式的课程,会议,研讨会和讲习班,由他的多元化小组监督
的导师。具体培训目标包括:(1)接受多水平回归建模培训,
贝叶斯分析技术。(2)熟练掌握数据科学,特别强调学习
Python用于数据提取、操作和分析。(3)进一步了解机器学习
特别强调深度学习的技术,包括DCNN和GAN。(4)继续培训
道德和负责任的研究行为。培训计划将与成套设备协调执行。
上述研究活动。这项研究计划的结果将用于制定一项
随后的R01研究提案,这将有助于候选人的过渡到一个独立的研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jithin Yohannan其他文献
Jithin Yohannan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jithin Yohannan', 18)}}的其他基金
A Comprehensive Strategy to Detect Glaucoma Worsening Earlier and With Fewer Tests
通过更少的测试及早发现青光眼恶化的综合策略
- 批准号:
10331842 - 财政年份:2021
- 资助金额:
$ 19.12万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 19.12万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 19.12万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 19.12万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 19.12万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 19.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 19.12万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 19.12万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 19.12万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 19.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 19.12万 - 项目类别:
Studentship