Role of sulfide catabolism in ischemic brain injury
硫化物分解代谢在缺血性脑损伤中的作用
基本信息
- 批准号:10588192
- 负责人:
- 金额:$ 34.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAdenosine TriphosphateAttentionAttenuatedBioenergeticsBrainBrain Hypoxia-IschemiaBrain InjuriesBrain IschemiaCatabolismCellsCentral Nervous SystemCerebral IschemiaCerebrumCessation of lifeComplexConsumptionDependovirusElectron TransportElectronsEncephalopathiesEnvironmental HazardsEnzymesFailureFemaleFunctional disorderHistologicHomeostasisHumanHydrogen SulfideHypoxiaImpairmentIncubatedInhalationIschemiaIschemic Brain InjuryIschemic StrokeMammalian CellMediatingMetabolismMethodsMitochondriaMorbidity - disease rateMusNADHNeurologic DysfunctionsNeuronsNicotinamide adenine dinucleotideNitric OxideOutcomeOxidative PhosphorylationOxidoreductaseOxygenPathway interactionsPlayProductionQuinonesReactive Oxygen SpeciesReperfusion InjuryReperfusion TherapyResistanceRespirationRoleSeveritiesSpeedSulfidesTherapeuticThiosulfate Sulfurtransferasebrain cellcell injurycerebral ischemic injuryclinical practicecomplex IVdeprivationimprovedinhibitorischemic injuryknock-downmalemortalityneuronal survivalneuroprotectionneurotoxicitynormoxiaoverexpressionoxidationpharmacologicpreconditioningpreservationpreventresponse
项目摘要
The brain is exquisitely sensitive to the lack of oxygen. Acute oxygen deprivation inhibits mitochondrial energy
production impairing the cellular integrity. Although ischemic brain injury is a leading cause of morbidity and
mortality, mechanism responsible for the ischemia-induced energy failure of the brain is incompletely
understood.
Hydrogen sulfide is an environmental hazard well known for its neurotoxicity. In mammalian cells, H2S is
produced by the transsulfuration pathway and is oxidized in mitochondria by sulfide oxidation enzymes
including sulfide quinone oxidoreductase (SQR). When oxygen is abundant, sulfide oxidation donates
electrons to the mitochondrial electron transport chain (ETC), thereby promoting adenosine triphosphate (ATP)
synthesis. In contrast, oxygen deprivation stimulates sulfide synthesis and hinders sulfide oxidation, leading to
sulfide accumulation. Accumulated sulfide inhibits ETC complex IV during ischemia and aggravate reperfusion
injury. Therefore, sulfide catabolism may play a pivotal role in the energy homeostasis during oxygen shortage
and cellular injury upon reoxygenation. However, role of sulfide catabolism on the bioenergetics of the brain
during acute oxygen deprivation has thus far attracted little attention. SQR is normally expressed at very low
levels in the central nervous system, explaining the particularly slow rate of sulfide consumption in the brain.
In preliminary studies, we observed that female mice had higher levels of SQR in the brain and were more
resistant to hypoxia than male mice, whereas, knockdown of brain SQR increased the sensitivity of female
mice to hypoxia. SQR overexpression in the brain of mice prevented neurologic dysfunction and death after
global cerebral ischemia and reperfusion (I/R). Pharmacological sulfide scavengers prevented ETC dysfunction
and improved energy production in human cells incubated in hypoxia or in the brains of mice subjected to
cerebral ischemia. Based on these observations, we hypothesize that preventing sulfide accumulation in the
brain either by enhanced sulfide oxidation or pharmacologic sulfide scavenger prevents ETC dysfunction
during oxygen shortage and attenuates ischemia/reperfusion injury of the brain. To address this hypothesis, we
propose: To determine the effects of enhanced sulfide oxidation on the severity of ischemic brain injury (Aim1),
to characterize the role of endogenous sulfide catabolism in the mitochondrial function and response to
ischemic brain injury (Aim 2), and to define the mechanism of the neuroprotective effects of sulfide oxidation
and therapeutic potential of sulfide scavenging after cerebral I/R. (Aim 3). Proposed studies are anticipated to
illuminate the critical role of sulfide in mitochondrial respiration and uncover a therapeutic potential of sulfide
catabolism in ischemic brain injury.
大脑对缺氧非常敏感。急性缺氧抑制线粒体能量
生产损害细胞的完整性。虽然缺血性脑损伤是发病的主要原因,
死亡率,负责缺血诱导的脑能量衰竭的机制不完全
明白
硫化氢是一种以神经毒性而闻名的环境危害。在哺乳动物细胞中,
通过转硫途径产生,并在线粒体中被硫化物氧化酶氧化
包括硫化物醌氧化还原酶(SQR)。当氧气充足时,
线粒体电子传递链(ETC),从而促进三磷酸腺苷(ATP)
合成.相反,缺氧刺激硫化物合成并阻碍硫化物氧化,导致
硫化物积累硫化物蓄积抑制缺血时ETC复合物IV并加重再灌注
损伤因此,硫化物催化剂可能在缺氧时的能量平衡中起着关键作用
和细胞损伤。然而,硫化物催化剂对大脑生物能量学的作用
在急性缺氧期间,迄今为止很少引起注意。SQR通常表示为非常低
硫化物在中枢神经系统中的水平,解释了大脑中硫化物消耗的速度特别慢。
在初步研究中,我们观察到雌性小鼠大脑中SQR水平较高,
脑SQR基因敲低可增加雌性小鼠对缺氧的敏感性,
小鼠缺氧。SQR在小鼠脑中的过表达防止了神经功能障碍和死亡,
全脑缺血再灌注(I/R)。药理学硫化物清除剂预防ETC功能障碍
以及在缺氧环境中培养的人类细胞或在经历缺氧的小鼠大脑中提高能量产生。
脑缺血根据这些观察,我们假设,防止硫化物积累在
通过增强硫化物氧化或药理学硫化物清除剂预防ETC功能障碍
并减轻脑缺血/再灌注损伤。为了解决这个问题,我们
目的:确定增强的硫化物氧化对缺血性脑损伤(Aim 1)严重程度的影响,
表征内源性硫化物催化剂在线粒体功能和对
缺血性脑损伤(目的2),并确定硫化物氧化的神经保护作用的机制
和脑I/R后硫化物清除的治疗潜力。(Aim(3)第三章。预计拟议的研究将
阐明硫化物在线粒体呼吸中的关键作用,并揭示硫化物的治疗潜力
在缺血性脑损伤中的作用
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUMITO ICHINOSE其他文献
FUMITO ICHINOSE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUMITO ICHINOSE', 18)}}的其他基金
Role of Sedation in the Post-Cardiac Arrest Neurological Recovery
镇静在心脏骤停后神经恢复中的作用
- 批准号:
10735115 - 财政年份:2023
- 资助金额:
$ 34.97万 - 项目类别:
Role of sulfide catabolism in ischemic brain injury
硫化物分解代谢在缺血性脑损伤中的作用
- 批准号:
10378758 - 财政年份:2019
- 资助金额:
$ 34.97万 - 项目类别:
IMPACT OF HYDROGEN SULFIDE ON OUTCOME OF CARDIAC ARREST AND CARDIOPULMONARY RESUS
硫化氢对心脏骤停和心肺复苏结果的影响
- 批准号:
8236893 - 财政年份:2010
- 资助金额:
$ 34.97万 - 项目类别:
IMPACT OF HYDROGEN SULFIDE ON OUTCOME OF CARDIAC ARREST AND CARDIOPULMONARY RESUS
硫化氢对心脏骤停和心肺复苏结果的影响
- 批准号:
8463026 - 财政年份:2010
- 资助金额:
$ 34.97万 - 项目类别:
IMPACT OF HYDROGEN SULFIDE ON OUTCOME OF CARDIAC ARREST AND CARDIOPULMONARY RESUS
硫化氢对心脏骤停和心肺复苏结果的影响
- 批准号:
8645697 - 财政年份:2010
- 资助金额:
$ 34.97万 - 项目类别:
IMPACT OF HYDROGEN SULFIDE ON OUTCOME OF CARDIAC ARREST AND CARDIOPULMONARY RESUS
硫化氢对心脏骤停和心肺复苏结果的影响
- 批准号:
7862033 - 财政年份:2010
- 资助金额:
$ 34.97万 - 项目类别:
IMPACT OF HYDROGEN SULFIDE ON OUTCOME OF CARDIAC ARREST AND CARDIOPULMONARY RESUS
硫化氢对心脏骤停和心肺复苏结果的影响
- 批准号:
8055816 - 财政年份:2010
- 资助金额:
$ 34.97万 - 项目类别:
Impact of nitric oxide synthase on myocardial dysfunction of sepsis
一氧化氮合酶对脓毒症心肌功能障碍的影响
- 批准号:
7618495 - 财政年份:2007
- 资助金额:
$ 34.97万 - 项目类别:
Impact of nitric oxide synthase on myocardial dysfunction of sepsis
一氧化氮合酶对脓毒症心肌功能障碍的影响
- 批准号:
7186477 - 财政年份:2007
- 资助金额:
$ 34.97万 - 项目类别:
Impact of nitric oxide synthase on myocardial dysfunction of sepsis
一氧化氮合酶对脓毒症心肌功能障碍的影响
- 批准号:
7418618 - 财政年份:2007
- 资助金额:
$ 34.97万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 34.97万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 34.97万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 34.97万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 34.97万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 34.97万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 34.97万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 34.97万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 34.97万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 34.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 34.97万 - 项目类别:
Standard Grant