Hierarchical statistical modeling and causal inference approaches to elucidate exposure pathways underlying health disparities

分层统计模型和因果推理方法阐明健康差异背后的暴露途径

基本信息

  • 批准号:
    10589163
  • 负责人:
  • 金额:
    $ 16.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Summary RP3 Hierarchical statistical modeling and causal inference approaches to elucidate exposure pathways underlying health disparities The health disparity between the Native American population and the US general population arises from the complex interplay between multiple socio-demographic, behavior, lifestyle and genetic susceptibility factors. Environmental contaminants are increasingly acknowledged to play an important part in explaining health disparity through their combined or interaction effects with other factors. Proximities of Native American communities to abandoned uranium mines (AUM) have been of particular health concern. These chronic exposures to AUM waste related metal mixtures pose higher risk for developing chronic and fatal diseases including hypertension, diabetes, kidney disease, and types of cancer in Native American populations compared to the US population. The hypothesis of this project is that the three Native American tribal communities included in this study (Navajo Nation, Crow, and Cheyenne River Sioux) encounter great risk of exposures to environmental hazards (mine waste related metal mixture exposures, unregulated water resources, and illegal dumping, etc.). These hazardous exposures along with socioeconomic status, psychosocial stress, behavior/lifestyle factors influence multiple biological pathways to produce health disparities in Native American communities. The complex set of exposure variables including dietary nutrients, physical activity, infectious agents, air pollutants and metal exposures at both the individual and community levels are acknowledged as contributors to health disparities, however, their relative contributions of the potential causal factors have not been well studied. The objective of this project is to employ data-driven and modeling approaches to understand the relative contribution of different environmental, behavior, and socioeconomic determinants of the health disparities between the native population and the US national population. We will use innovative modeling approaches such as decomposition analyses and structural causal models to estimate the effects of risk factors at the individual and community level on the health disparities. In Aim 1, we will collect data and summarize the frequency distributions for major chronic and fatal diseases in the Native American communities. In Aim 2, we will employ novel hierarchical modeling approaches to estimate the relative contribution of different risk factors at the individual level and community level to the health disparities. In Aim 3, we will implement frontier causal pathway analyses to illustrate the intermediate mechanisms explaining the health disparity. Aim 4 is to examine the complex correlation structure among multi-dimensional exposures, intermediate biological responses, and health endpoints using frontier statistical approaches. We expect this project will identify major contributing factors that explain a large proportion of the health disparity, and in addition elucidate the intermediate causal pathway that the effects are transmitted to the health disparity endpoints. These findings have the potential to inform policymaking on the cost-effective resource allocation to maximally reduce disparity and improve community health.
总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Luo其他文献

Li Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Luo', 18)}}的其他基金

Biostatistics and Data Science Core
生物统计学和数据科学核心
  • 批准号:
    10689687
  • 财政年份:
    2022
  • 资助金额:
    $ 16.25万
  • 项目类别:
Biostatistics and Data Science Core
生物统计学和数据科学核心
  • 批准号:
    10393301
  • 财政年份:
    2022
  • 资助金额:
    $ 16.25万
  • 项目类别:
Data Management and Analysis Core
数据管理与分析核心
  • 批准号:
    10707542
  • 财政年份:
    2017
  • 资助金额:
    $ 16.25万
  • 项目类别:
Data Management and Analysis Core
数据管理与分析核心
  • 批准号:
    10353209
  • 财政年份:
    2017
  • 资助金额:
    $ 16.25万
  • 项目类别:
Hierarchical statistical modeling and causal inference approaches to elucidate exposure pathways underlying health disparities
分层统计模型和因果推理方法阐明健康差异背后的暴露途径
  • 批准号:
    10372187
  • 财政年份:
    2015
  • 资助金额:
    $ 16.25万
  • 项目类别:
Hierarchical statistical modeling and causal inference approaches to elucidate exposure pathways underlying health disparities
分层统计模型和因果推理方法阐明健康差异背后的暴露途径
  • 批准号:
    10062404
  • 财政年份:
    2015
  • 资助金额:
    $ 16.25万
  • 项目类别:
Hierarchical statistical modeling and causal inference approaches to elucidate exposure pathways underlying health disparities
分层统计模型和因果推理方法阐明健康差异背后的暴露途径
  • 批准号:
    10218051
  • 财政年份:
    2015
  • 资助金额:
    $ 16.25万
  • 项目类别:

相似海外基金

Prenatal Fatty Acid Supplementation and Early Childhood Asthma and Atopy in Black American Families
美国黑人家庭产前脂肪酸补充剂与儿童早期哮喘和特应性
  • 批准号:
    10586398
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
A culturally tailored, scalable asthma intervention for Mexican American children
针对墨西哥裔美国儿童的文化定制、可扩展的哮喘干预措施
  • 批准号:
    10440621
  • 财政年份:
    2022
  • 资助金额:
    $ 16.25万
  • 项目类别:
A culturally tailored, scalable asthma intervention for Mexican American children
针对墨西哥裔美国儿童的文化定制、可扩展的哮喘干预措施
  • 批准号:
    10646230
  • 财政年份:
    2022
  • 资助金额:
    $ 16.25万
  • 项目类别:
Asthma and Technology in Emerging African American Adults (The ATHENA Project)
新兴非洲裔美国成年人的哮喘与技术(雅典娜项目)
  • 批准号:
    10478271
  • 财政年份:
    2021
  • 资助金额:
    $ 16.25万
  • 项目类别:
Asthma and Technology in Emerging African American Adults (The ATHENA Project)
新兴非洲裔美国成年人的哮喘与技术(雅典娜项目)
  • 批准号:
    10614596
  • 财政年份:
    2021
  • 资助金额:
    $ 16.25万
  • 项目类别:
Asthma and Technology in Emerging African American Adults (The ATHENA Project)
新兴非洲裔美国成年人的哮喘与技术(雅典娜项目)
  • 批准号:
    10730212
  • 财政年份:
    2021
  • 资助金额:
    $ 16.25万
  • 项目类别:
Asthma and Technology in Emerging African American Adults (The ATHENA Project)
新兴非洲裔美国成年人的哮喘与技术(雅典娜项目)
  • 批准号:
    10296991
  • 财政年份:
    2021
  • 资助金额:
    $ 16.25万
  • 项目类别:
Translating an Efficacious Illness Management Intervention for African American Youth with Poorly Controlled Asthma to Real World Settings
将针对哮喘控制不佳的非裔美国青年的有效疾病管理干预措施应用到现实世界中
  • 批准号:
    10227125
  • 财政年份:
    2017
  • 资助金额:
    $ 16.25万
  • 项目类别:
Antimicrobial Agents and Asthma Morbidity among African American Children with Asthma
抗菌药物与非裔美国哮喘儿童的哮喘发病率
  • 批准号:
    9373251
  • 财政年份:
    2017
  • 资助金额:
    $ 16.25万
  • 项目类别:
Translating an Efficacious Illness Management Intervention for African American Youth with Poorly Controlled Asthma to Real World Settings
将针对哮喘控制不佳的非裔美国青年的有效疾病管理干预措施应用到现实世界中
  • 批准号:
    9380048
  • 财政年份:
    2017
  • 资助金额:
    $ 16.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了