Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
基本信息
- 批准号:10273983
- 负责人:
- 金额:$ 272.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressAerosolsAirApplications GrantsAspirate substanceBenchmarkingBiophotonicsCOVID-19COVID-19 detectionCOVID-19 monitoringCOVID-19 pandemicCOVID-19 patientCell Culture TechniquesCell NucleusCessation of lifeChemicalsCollectionCommunitiesContact TracingCountryDNADataDetectionDevelopmentDevicesDoseDropsEnvironmentEnzyme Inhibitor DrugsEnzymesGoalsGuidelinesHandwashingHealthHospitalsHourHumanIndividualInterdisciplinary StudyInvestigationKnowledgeLaboratoriesLeadLigationLungMasksMeasurementMeasuresMethodsMonitorNasal cavityOnset of illnessPerformancePhotonsPolymerase Chain ReactionPredispositionPreparationProcessProtocols documentationQuarantineRNARNA-Directed DNA PolymeraseReaction TimeReadingReagentReportingResearchResearch ProposalsReverse TranscriptionRiskRisk ManagementRoleSARS-CoV-2 infectionSARS-CoV-2 transmissionSafetySamplingSchoolsSeverity of illnessSignal TransductionSocial DistanceSpeedStandardizationSymptomsSystemTechnologyTestingTimeUncertaintyViralViral Load resultVirusVirus InactivationWorkplaceaerosolizedair monitoringair samplingbasechemical kineticsdesigndetection platformdisease transmissionepidemiology studyfootgenomic RNAhigh riskhuman coronavirusinfection rateinfection riskinnovationinsightknowledge baselaboratory equipmentmonitoring devicenovelparticlephoton-counting detectorportabilitypreventreal time monitoringsensorsolid state electronicstissue culturetooltransmission processviral detection
项目摘要
Project Summary
The ability to rapidly monitor SARS-CoV-2 in aerosol—drop particles <5 μm in size that evaporate into droplet
nuclei and become suspended in air—at the point of presentation is critical to managing the risk of infection by
airborne transmission as people return to their communities, workplaces, and schools during the COVID-19
pandemic. However, current enzyme-based methods lack sensitivity, speed, simplicity, and require lab
equipment—hence, lack the capability for real-time point-of-presentation (POP) monitoring. In the absence of a
real-time POP monitoring capability, SARS-CoV-2 transmission remains poorly understood. In this application,
a multidisciplinary research approach that integrates innovations in rapid-kinetic chemical auto-ligation, non-
enzymatic isothermal signal amplification, solid-state electronics, and biophotonics is proposed to enable the
development of a novel air monitoring system (AMS) that detects and quantifies aerosolized SARS-CoV-2 at
the point of presentation in real-time. Recent advances in viral culturing protocols, air sampling technology, and
single-photon detection capability will provide the framework for a collaborative research endeavor to establish
a new paradigm to address the knowledge gap between the spread of COVID-19 and SARS-CoV-2 aerosol
transmission. Therefore, the proposal is aimed at transforming the way COVID-19 is currently researched by
providing a tool to enable unparalleled studies that will significantly advance the current knowledgebase. These
transformative studies could ultimately guide a new field of investigations that lead to a better understanding of
COVID-19 spread, such as viral exposure vs. risk, viral decay rate vs. infectivity, and viral load vs. infectious
dose in SARS-CoV-2 airborne transmission. At a minimum, the proposed three research objectives will provide
a basic understanding of COVID-19 aerosol transmission. Firstly, current air sampling systems use a multi-step
workflow that takes several hours to complete and requires lab equipment, reagents, and significant hands-on
time. The goal of objective 1 is to combine air sampling and detection into a one-step real-time POP AMS
device that yields SARS-CoV-2 quantification results in less than 5 minutes, without lab equipment or reagents.
Secondly, viral inoculum, or initial dose of virus, aspirated into the nasal cavity and lungs has been associated
with disease onset and severity. The goal of objective 2 is to optimize and validate AMS to correlate readings
from the air monitoring device with tissue-culture infectious dose (TCID50) and reverse transcription
polymerase chain reaction (RT-PCR) quantities. These parameters can then later be applied to Human studies
to determine the Human infectious dose of SARS-CoV-2 by aerosol transmission. Thirdly, field-based testing in
hospitals will provide a means to beta test AMS performance in high-risk environments. The goal of objective 3
is to calibrate AMS measurements with RT-PCR cycle-threshold (Ct) values and cell-culture TCID50 viability
results and then benchmark with results from high-risk environments taken from around the world to correlate
SARS-CoV-2 aerosol concentrations with global infection rate, as a potential for establishing threshold levels.
项目摘要
快速监测蒸发成液滴的气雾剂颗粒中SARS-CoV-2的能力
细胞核并悬浮在空气中--在发病时对控制感染风险至关重要。
新冠肺炎期间,人们返回社区、工作场所和学校时通过空气传播
大流行。然而,目前基于酶的方法缺乏灵敏度、快速、简单且需要实验室
设备--因此,缺乏实时监控呈现点(POP)的能力。在缺少
对于POP的实时监测能力,SARS-CoV-2的传播仍然知之甚少。在此应用程序中,
一种多学科的研究方法,整合了快速动力学化学自动配位、非
酶等温信号放大、固态电子学和生物光子学被提出以使
新型气雾化SARS-CoV-2空气监测系统的研制
实时演示的要点。病毒培养方案、空气采样技术和
单光子探测能力将为合作研究努力提供框架,以建立
解决新冠肺炎传播和SARS-CoV-2气雾剂之间知识差距的新范式
变速箱。因此,该提案旨在转变美国政府目前对新冠肺炎的研究方式。
提供一种工具来实现无与伦比的研究,这将极大地推进当前的知识库。这些
变革性研究最终可能指导一个新的调查领域,从而更好地理解
新冠肺炎传播,如病毒暴露与风险、病毒衰减率与传染性、病毒载量与传染性
SARS-CoV-2通过空气传播的剂量。至少,拟议的三个研究目标将提供
对新冠肺炎气溶胶传播有基本了解。首先,目前的空气采样系统使用多步骤
需要几个小时才能完成并需要实验室设备、试剂和大量实际操作的工作流程
时间到了。目标1的目标是将空气采样和检测结合到一步实时POP AMS中
SARS-CoV-2定量检测设备在不到5分钟的时间内完成,无需实验室设备或试剂。
其次,吸入鼻腔和肺部的病毒疫苗或初始剂量的病毒与
与疾病的发病和严重程度有关。目标2的目标是优化和验证AMS以关联读数
来自空气监测装置的组织培养感染剂量(TCID50)和逆转录
聚合酶链式反应(RT-PCR)定量。这些参数随后可以应用于人体研究
通过气雾剂传播测定人感染SARS-CoV-2的剂量。第三,基于现场的测试
医院将提供一种在高风险环境中测试AMS性能的方法。目标3的目标
是用RT-PCR周期阈值(Ct)值和细胞培养TCID50活性校准AMS测量
结果,然后与来自世界各地的高风险环境的结果进行基准比较,以进行关联
SARS-CoV-2气溶胶浓度与全球感染率的关系,作为建立阈值水平的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Mancebo其他文献
Ricardo Mancebo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Mancebo', 18)}}的其他基金
Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
- 批准号:
10854070 - 财政年份:2023
- 资助金额:
$ 272.32万 - 项目类别:
Isothermal Chain Reaction (ICR) Rapid and Early Detection of Pathogens for Sepsis Pont-of-Care Testing, Stratification, and Monitoring
等温链反应 (ICR) 快速、早期检测病原体,用于脓毒症即时护理测试、分层和监测
- 批准号:
9200259 - 财政年份:2016
- 资助金额:
$ 272.32万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 272.32万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 272.32万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 272.32万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 272.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 272.32万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 272.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 272.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 272.32万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 272.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 272.32万 - 项目类别:
Research Grant