Computational modeling of genetic variations by multi-omics integration to decipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
基本信息
- 批准号:10274879
- 负责人:
- 金额:$ 38.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseBiological AssayBiological MarkersBiomedical ResearchCommunitiesComputer ModelsComputing MethodologiesDataDevelopmentDiagnosisGenetic MedicineGenetic VariationGenomeGoalsHeritabilityHuman GeneticsIndianaIndividualLinkage DisequilibriumMachine LearningMethodologyMethodsMultiple MyelomaPersonsPhenotypePrecision HealthPsychological TransferQuantitative Trait LociResearchRoleSample SizeScanningScientistSoftware ToolsStatistical MethodsSystems BiologyTestingTrainingUniversitiesUntranslated RNAVariantWorkbiobankcomputer frameworkdisorder preventiongenetic variantgenome sequencinggenome wide association studyimprovedinterestmolecular phenotypemultidisciplinarymultiple omicsnovelopen sourceprecision medicineprogramstraitwhole genome
项目摘要
Computational modeling of genetic variations by multi-omics integration to decipher personal genome
A person’s genome typically contains millions of genetic variants. Understanding these variants by assessing
their functional impact on a person’s phenotype, is currently of great interest in human genetics and precision
medicine. Though Genome-Wide Association Studies (GWAS) or Quantitative Trait Locus (QTL) studies have
successfully identified variants associated with traits or molecular phenotypes, most of them are in noncoding
regions and hampered by linkage disequilibrium, making the identification and interpretation of casual variants
difficult. Moreover, most of these discoveries are common variants, however, rare and individual-specific variants
in personal genome are underexplored. Understanding these variants will not only explain the missing heritability
from GWAS but also improve the precision medicine. Recently, the advent and popularity of whole genome
sequencing (WGS) and paired multi-omics functional assays provide an unprecedented opportunity to identify
rare and individual-specific casual variants. However, the sample sizes of most WGS studies are modest
compared to GWAS, making the WGS analysis particularly challenging. Nevertheless, statistical and
computational methods for analyzing WGS are underdeveloped. Given these challenges and my unique multi-
disciplinary training, the overall goals of my research program are to develop a novel class of machine learning,
statistical and system biology approaches for the identification, prioritization and interpretation of noncoding
variants by integrating GWAS, WGS and multi-omics functional assays, which will empower precision medicine
by identifying individualized biomarkers for disease prevention, diagnosis and treatment. Specifically, in the next
five years, my lab will (i) develop a novel transfer learning approach to improve the prediction of noncoding
casual variants using multi-dimensional omics features (ii) develop a multi-omics integrated omnibus scan test
to improve the identification of rare casual variants from whole-genome sequencing data (iii) develop an
integrative computational framework for scoring impact of noncoding variants in personal genome (iv) develop a
novel class of multi-trait methods to improve phenotype prediction using whole-genome genetic variations.
In
the meantime, supported by Indiana University Precision Health Initiative, we will apply the methodologies to
different studies from Indiana Alzheimer’s Disease Center and Indiana Multiple Myeloma Biobank for novel
scientific findings. We will work close with collaborated geneticists and clinician-scientists to interpret the
discoveries. Importantly, we will work with experimental labs to validate the findings. In line with our previous
work, we will continue to make all developed methods into open-source software tools that are accessible and
useful to the biomedical research community.
多组学整合的遗传变异计算模型解读个人基因组
一个人的基因组通常包含数百万个遗传变异。通过评估了解这些变量
它们对一个人的表型的功能性影响,目前在人类遗传学和精确性方面引起了极大的兴趣。
药尽管全基因组关联研究(GWAS)或数量性状基因座(QTL)研究已经有
成功地鉴定出与性状或分子表型相关的变异,其中大多数是非编码的,
区域和连锁不平衡的阻碍,使偶然变异的识别和解释
难此外,这些发现大多是常见的变异,然而,罕见的和个体特异性的变异
在个人基因组中还未被充分研究。了解这些变异不仅可以解释缺失的遗传性
还能改善精准医疗。近年来,全基因组的出现和普及,
测序(WGS)和配对的多组学功能测定提供了一个前所未有的机会,以确定
罕见的和个体特异性的偶然变异。然而,大多数WGS研究的样本量是适度的
与GWAS相比,这使得WGS分析特别具有挑战性。然而,统计和
用于分析WGS的计算方法还不成熟。鉴于这些挑战和我独特的多-
学科培训,我的研究计划的总体目标是开发一种新型的机器学习,
统计和系统生物学方法识别,优先级和非编码的解释
通过整合GWAS、WGS和多组学功能测定,
通过识别用于疾病预防、诊断和治疗的个体化生物标志物。具体来说,在未来
五年后,我的实验室将(i)开发一种新的迁移学习方法来提高非编码的预测能力。
使用多维组学特征的偶然变体(ii)开发多组学集成综合扫描测试
改进从全基因组测序数据中鉴定罕见偶然变异的方法(iii)开发一个
个人基因组中非编码变异影响评分的综合计算框架(iv)开发一个
新的一类多性状方法,以提高表型预测使用全基因组遗传变异。
在
同时,在印第安纳州大学精准健康计划的支持下,我们将把这些方法应用于
来自印第安纳州阿尔茨海默病中心和印第安纳州多发性骨髓瘤生物库的不同研究
科学发现。我们将与遗传学家和临床科学家密切合作,
发现。重要的是,我们将与实验室合作,以验证这些发现。符合我们之前
工作,我们将继续使所有开发的方法成为开源软件工具,
对生物医学研究界有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Chen其他文献
Li Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Chen', 18)}}的其他基金
Computational modeling of genetic variations by multi-omics integration to decipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
- 批准号:
10457987 - 财政年份:2021
- 资助金额:
$ 38.44万 - 项目类别:
Computational modeling of genetic variations by multi-omics integration todecipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
- 批准号:
10688701 - 财政年份:2021
- 资助金额:
$ 38.44万 - 项目类别:
Computational modeling of genetic variations by multi-omics integration todecipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
- 批准号:
10625423 - 财政年份:2021
- 资助金额:
$ 38.44万 - 项目类别:
Statistical Methods for Environmental Data Subject to Detection Limits
受检测限影响的环境数据的统计方法
- 批准号:
9061638 - 财政年份:2015
- 资助金额:
$ 38.44万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 38.44万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 38.44万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 38.44万 - 项目类别: