Computational modeling of genetic variations by multi-omics integration todecipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
基本信息
- 批准号:10688701
- 负责人:
- 金额:$ 30.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Computational modeling of genetic variations by multi-omics integration to decipher personal genome
A person’s genome typically contains millions of genetic variants. Understanding these variants by assessing
their functional impact on a person’s phenotype, is currently of great interest in human genetics and precision
medicine. Though Genome-Wide Association Studies (GWAS) or Quantitative Trait Locus (QTL) studies have
successfully identified variants associated with traits or molecular phenotypes, most of them are in noncoding
regions and hampered by linkage disequilibrium, making the identification and interpretation of casual variants
difficult. Moreover, most of these discoveries are common variants, however, rare and individual-specific variants
in personal genome are underexplored. Understanding these variants will not only explain the missing heritability
from GWAS but also improve the precision medicine. Recently, the advent and popularity of whole genome
sequencing (WGS) and paired multi-omics functional assays provide an unprecedented opportunity to identify
rare and individual-specific casual variants. However, the sample sizes of most WGS studies are modest
compared to GWAS, making the WGS analysis particularly challenging. Nevertheless, statistical and
computational methods for analyzing WGS are underdeveloped. Given these challenges and my unique multi-
disciplinary training, the overall goals of my research program are to develop a novel class of machine learning,
statistical and system biology approaches for the identification, prioritization and interpretation of noncoding
variants by integrating GWAS, WGS and multi-omics functional assays, which will empower precision medicine
by identifying individualized biomarkers for disease prevention, diagnosis and treatment. Specifically, in the next
five years, my lab will (i) develop a novel transfer learning approach to improve the prediction of noncoding
casual variants using multi-dimensional omics features (ii) develop a multi-omics integrated omnibus scan test
to improve the identification of rare casual variants from whole-genome sequencing data (iii) develop an
integrative computational framework for scoring impact of noncoding variants in personal genome (iv) develop a
novel class of multi-trait methods to improve phenotype prediction using whole-genome genetic variations.
In
the meantime, supported by Indiana University Precision Health Initiative, we will apply the methodologies to
different studies from Indiana Alzheimer’s Disease Center and Indiana Multiple Myeloma Biobank for novel
scientific findings. We will work close with collaborated geneticists and clinician-scientists to interpret the
discoveries. Importantly, we will work with experimental labs to validate the findings. In line with our previous
work, we will continue to make all developed methods into open-source software tools that are accessible and
useful to the biomedical research community.
利用多组学集成对遗传变异进行计算建模以破译个人基因组
一个人的基因组通常包含数百万个基因变异。通过评估了解这些变体
它们对人的表型的功能影响,目前在人类遗传学和精确度方面引起了极大的兴趣
医药。尽管全基因组关联研究(GWAS)或数量性状基因座(QTL)研究
成功识别出与性状或分子表型相关的变异,其中大部分是非编码的
区域,并受到连锁不平衡的阻碍,使得随机变异的识别和解释
很难。此外,这些发现中的大多数都是常见的变体,然而,罕见的和个体特有的变体
在个人基因组中还没有得到充分的探索。了解这些变异不仅可以解释缺失的遗传性
也提高了精准医疗的水平。最近,全基因组的出现和流行
测序(WGS)和配对的多组学功能分析提供了一个前所未有的机会来识别
罕见的和特定于个人的休闲变体。然而,大多数WGS研究的样本量都不大
与全球气候变化网络相比,这使得WGS的分析特别具有挑战性。尽管如此,统计和
用于分析WGS的计算方法还不够发达。考虑到这些挑战和我独特的多-
学科培训,我的研究项目的总体目标是开发一种新型的机器学习课程,
非编码的识别、优先排序和解释的统计和系统生物学方法
通过整合GWAS、WGS和多组学功能分析来获得变异,这将为精确医学提供支持
通过识别用于疾病预防、诊断和治疗的个性化生物标记物。具体地说,在接下来的
在五年的时间里,我的实验室将(I)开发一种新的迁移学习方法来提高非编码的预测
使用多维组学特征的随意变体(II)开发多组学集成综合扫描测试
为了改进从全基因组测序数据中识别罕见的随机变异体(III),开发一种
对个人基因组中非编码变异的影响进行评分的综合计算框架(IV)
利用全基因组遗传变异改进表型预测的新型多性状方法。
在……里面
同时,在印第安纳大学精密健康倡议的支持下,我们将把这些方法应用于
印第安纳州阿尔茨海默病中心和印第安纳州多发性骨髓瘤生物库对小说的不同研究
科学发现。我们将与合作的遗传学家和临床科学家密切合作,以解释
发现。重要的是,我们将与实验实验室合作来验证这些发现。与我们之前的
工作中,我们将继续将所有开发的方法转化为可访问的开源软件工具
对生物医学研究界很有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Chen其他文献
Li Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Chen', 18)}}的其他基金
Computational modeling of genetic variations by multi-omics integration to decipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
- 批准号:
10274879 - 财政年份:2021
- 资助金额:
$ 30.79万 - 项目类别:
Computational modeling of genetic variations by multi-omics integration to decipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
- 批准号:
10457987 - 财政年份:2021
- 资助金额:
$ 30.79万 - 项目类别:
Computational modeling of genetic variations by multi-omics integration todecipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
- 批准号:
10625423 - 财政年份:2021
- 资助金额:
$ 30.79万 - 项目类别:
Statistical Methods for Environmental Data Subject to Detection Limits
受检测限影响的环境数据的统计方法
- 批准号:
9061638 - 财政年份:2015
- 资助金额:
$ 30.79万 - 项目类别:
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
- 批准号:
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
ABM有效性检验的关键技术研究
- 批准号:70701001
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
三峡库区以流域为单元森林植被对洪水影响研究
- 批准号:30571486
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Computational Strategies to Tailor Existing Interventions for First Major Depressive Episodes to Inform and Test Personalized Interventions
针对首次严重抑郁发作定制现有干预措施的计算策略,以告知和测试个性化干预措施
- 批准号:
10650695 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
A reference-free computational algorithm for comprehensive somatic mosaic mutation detection
一种用于综合体细胞嵌合突变检测的无参考计算算法
- 批准号:
10662755 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Computational toolbox for spatial transcriptomic analysis of complex tissues
用于复杂组织空间转录组分析的计算工具箱
- 批准号:
10666294 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
The integration of laboratory data with computational 3-D modeling to analyze the role of the central amygdala in neuropathic pain
将实验室数据与计算 3D 建模相结合,分析中央杏仁核在神经性疼痛中的作用
- 批准号:
10650977 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Computational phenotyping of face expression in early psychosis
早期精神病面部表情的计算表型
- 批准号:
10608718 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Developing a computational platform for induced-fit and chemogenetic drug design
开发诱导拟合和化学遗传学药物设计的计算平台
- 批准号:
10680745 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Computational analysis of tumor ecosystems and their regulation and association with outcomes
肿瘤生态系统及其调节及其与结果关联的计算分析
- 批准号:
10568399 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
- 批准号:
10889303 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Leveraging computational strategies to disentangle the genetic and neural underpinnings of ADHD and its associated cognitive systems
利用计算策略来解开 ADHD 及其相关认知系统的遗传和神经基础
- 批准号:
10732355 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别: