Heme trafficking in prokaryotic cytochrome c biogenesis
原核细胞色素 C 生物发生中的血红素运输
基本信息
- 批准号:10272751
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAerobicAnaerobic BacteriaBioenergeticsBiogenesisBiologicalBiological ModelsBiological ProcessCatalysisCell physiologyDrug Metabolic DetoxicationElectron TransportEnvironmentEscherichia coliEukaryotaFoundationsFutureHemeHemeproteinsIndividualIntegral Membrane ProteinInvestigationKnowledgeLigaseMembraneMembrane ProteinsMolecularMolecular ChaperonesNatureOrganismPathway interactionsPhotosynthesisPlayPositioning AttributeProkaryotic CellsProteinsReactionRecombinantsRegulationRespirationRoleSignal TransductionSystemVisionWorkantimicrobialcytochrome ccytotoxicityheme receptorinsightnovelpathogenperiplasmprotein functiontrafficking
项目摘要
Project Summary
Cytochromes c are highly conserved heme proteins that function in electron transport chains for cellular
functions such as respiration, photosynthesis and detoxification. The ability of prokaryotes to survive and thrive
in diverse, often hostile environments is a direct result of the plasticity of their electron transport chains, of
which cytochrome c is an essential component. Much effort has been devoted to studying the roles of
individual cytochromes c, but much less is understood about their biogenesis, which requires the covalent
attachment of heme at a conserved CXXCH motif for proper folding and function. Despite their diversity, all
cytochromes c are made by one of three pathways, System I (prokaryotes), System II (prokaryotes) and
System III (eukaryotes), thus elucidation of the molecular mechanisms of these pathways is critical to our
understanding of bioenergetics and cellular survival. While the three pathways have evolved different
mechanisms to accomplish biogenesis, all must transport heme to a holocytochrome c synthetase. Heme is an
essential co-factor in all organisms, functioning not only in electron transport chains for respiration, but also for
catalysis, regulation and signaling. Yet our knowledge of heme transporters and heme trafficking is limited due
to heme’s cytotoxicity, the transient nature of trafficking and the technical challenges of studying membrane
proteins. Thus, we must also address the mechanisms of heme trafficking and here we describe our long-term
vision to elucidate the general mechanisms of heme delivery, transport and attachment, beginning with the
System I pathway. We propose to 1) identify the cytoplasmic heme receptor and mechanisms of heme
delivery, 2) determine the path of heme trafficking by System I, and 3) identify the requirements for periplasmic
heme attachment. The System I pathway consists of eight integral membrane proteins (CcmABCDEFGH) and
provides a tractable model system to study these fundamental biological questions. CcmABCD are proposed
to transport heme across the bacterial membrane and attach it to CcmE, the periplasmic heme chaperone,
which trafficks heme to the holocytochrome c synthetase, CcmFH. Utilizing a functional, recombinant E. coli
system, the System I proteins purify with endogenous heme, removing many of the technical barriers often
associated with membrane proteins. Importantly, the heme attachment reaction occurs in the periplasm, is
required for the survival of many pathogens, and likely differs in mechanisms of heme attachment from the
eukaryotic synthetase, thus the CcmFH synthetase is a potential target for novel antimicrobials. Our proposed
studies on System I will simultaneously provide insights into cytochrome c biogenesis and general
mechanisms of heme trafficking, uniquely positioning us to study two fundamental biological processes. A
natural extension of this work is to apply the general principles learned and approaches developed to the other
cytochrome c biogenesis pathways, as well as to other prokaryotic and eukaryotic heme transporters.
项目摘要
细胞色素c是高度保守的血红素蛋白,在细胞的电子传递链中发挥作用。
具有呼吸、光合作用和解毒等功能。原核生物生存和繁衍的能力
是电子传输链可塑性的直接结果,
其中细胞色素c是必不可少的成分。人们已经投入了大量的精力来研究
单个细胞色素c,但对它们的生物发生知之甚少,这需要共价
将血红素附着在保守的CXXCH基序上,以实现正确的折叠和功能。尽管它们的多样性,所有的
细胞色素c由三个途径之一产生,系统一(原核生物)、系统二(原核生物)和
系统III(真核生物),因此,阐明这些途径的分子机制对我们的
了解生物能量学和细胞生存。虽然这三条路径进化的方式不同
完成生物发生的机制,都必须将血红素运输到全细胞色素c合成酶。亚铁血红素是一种
所有生物体中的基本辅因子,不仅在呼吸电子传递链中起作用,而且在
催化、调节和信号传递。然而,我们对血红素运输者和血红素贩运的了解有限。
对血红素的细胞毒性、转运的暂时性和膜研究的技术挑战
蛋白质。因此,我们还必须解决贩运血红素的机制,在这里我们描述我们的长期工作。
阐明血红素传递、运输和依附的一般机制的愿景,从
系统I途径。我们建议:1)鉴定胞质中的血红素受体及其作用机制
交付,2)通过系统I确定血红素运输的路径,以及3)确定周质
亚铁血红素依附。系统I途径由8个完整的膜蛋白(CcmABCDEFGH)和
为研究这些基本的生物学问题提供了一个易于处理的模型系统。Ccmabu建议
通过细菌膜运输血红素并将其连接到CCME上,CCME是周质中的血红素伴侣,
它将血红素运输到全细胞色素c合成酶CcmFH。利用功能性重组大肠杆菌
系统I蛋白用内源性血红素进行纯化,消除了许多技术障碍
与膜蛋白有关。重要的是,血红素附着反应发生在周质中,即
是许多病原体生存所必需的,可能在附着血红素的机制上与
因此,CcmFH合成酶是新型抗微生物药物的潜在靶点。我们的建议
对系统I的研究将同时提供对细胞色素c生物发生和一般
血红素转移的机制,使我们能够研究两个基本的生物过程。一个
这项工作的自然延伸是将学到的一般原则和发展出来的方法应用于其他人
细胞色素c生物发生途径,以及其他原核和真核血红素转运体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Molly Cuddy Sutherland其他文献
Molly Cuddy Sutherland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Molly Cuddy Sutherland', 18)}}的其他基金
Heme trafficking in prokaryotic cytochrome c biogenesis
原核细胞色素 C 生物发生中的血红素运输
- 批准号:
10618929 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Heme trafficking in prokaryotic cytochrome c biogenesis
原核细胞色素 C 生物发生中的血红素运输
- 批准号:
10434154 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
相似海外基金
Targeting aerobic glycolysis via hexokinase 2 inhibition in Natural Killer T cell lymphomas
通过抑制己糖激酶 2 靶向自然杀伤 T 细胞淋巴瘤中的有氧糖酵解
- 批准号:
23K07830 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing Late Metal Catalytic Systems for Aerobic Partial Oxidation of Alkanes
开发烷烃有氧部分氧化的后金属催化系统
- 批准号:
2247667 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Concurrent Aerobic Exercise and Cognitive Training to Prevent Alzheimer's in at-risk Older Adults
同时进行有氧运动和认知训练可预防高危老年人的阿尔茨海默病
- 批准号:
10696409 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Precision Medicine in Alzheimer’s Disease: A SMART Trial of Adaptive Exercises and Their Mechanisms of Action Using AT(N) Biomarkers to Optimize Aerobic-Fitness Responses
阿尔茨海默病的精准医学:使用 AT(N) 生物标志物优化有氧健身反应的适应性运动及其作用机制的 SMART 试验
- 批准号:
10581973 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
MIND Foods and Aerobic Training in Black Adults with HTN: An ADRD Prevention Pilot RCT (MAT)
MIND 食品和患有 HTN 的黑人成人的有氧训练:ADRD 预防试点随机对照试验 (MAT)
- 批准号:
10585366 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Investigating the physical and chemical controls on aerobic methane oxidation
研究好氧甲烷氧化的物理和化学控制
- 批准号:
2241873 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Pro-Resolving Inflammatory Mediators in Neurovascular Gains in Aerobic Training; a phase 2, double-blind, randomized placebo-controlled trial (PRIMiNG-AT2)
有氧训练中促进神经血管增益的炎症介质的消除;
- 批准号:
485524 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Operating Grants
Effect of aerobic exercise-induced sleep changes on arterial stiffness associated with postprandial hyperglycemia.
有氧运动引起的睡眠变化对与餐后高血糖相关的动脉僵硬度的影响。
- 批准号:
23K10645 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
- 批准号:
10717825 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
The Effects of Aerobic Exercise on Cardiovascular Health in Postmenopausal Females: A Systematic Review and Meta-Analysis
有氧运动对绝经后女性心血管健康的影响:系统评价和荟萃分析
- 批准号:
480729 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别: