Programmable Construction of 3D in vitro Disease Models Capturing Microenvironment Heterogeneity

捕获微环境异质性的 3D 体外疾病模型的可编程构建

基本信息

  • 批准号:
    10271839
  • 负责人:
  • 金额:
    $ 12.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT More than 90% of drug candidates that could pass preclinical validations eventually fail to be approved for clinical applications. A main cause of these failures is that conventional models—monolayer cultured cells and lab animals—are limited in the capability to recapitulate the native microenvironments. It is well demonstrated that 3D cultured cells, typically spheroids and scaffolds, can more closely mimic their natural behaviors. The emerging technologies of organoid and 3D bioprinting have been developed to significantly improve the complexity of these 3D platforms. However, lacking the guidance from surrounding biological cues, the intrinsic capability of cells may not be sufficient to drive self-organization for target tissue functions during the maturation and development. To dynamically model physiological microenvironments with spatiotemporal accuracy and re-establish directed cell-cell and cell-ECM interactions in vitro, in specific aim 1, 3D supporting matrices will be weaved with embedded biochemical and biomechanical cues. This will be enabled by programmably 3D printing cell-laden ECM-derived materials with the on-thefly ink formulation and following guided ECM remodeling by encapsulated fibroblasts. Specific aim 2 will explore if generated chemical and mechanical dual-gradients can direct multiscale vascularization of printed tissue constructs, a major challenge in tissue engineering. The perfusability of the vasculature will be evaluated. 3D tumor models will be assembled as a drug testbed to study how stromal barriers shape the resistance on therapeutic agents. Three innovations are featured by the proposed biofabrication strategy, including 1) 3D Print ECM-derived matrices with on-the-fly programmable formulation of bioinks and in situ crosslinking; 2) Direct cell migration, ECM remodeling, and angiogenesis with immobilized biochemical and biomechanical dual-gradients; 3) Construct tissue architectures by combining direct 3D bioprinting and postprint guided remodeling, toward 4D bioprinting. If successful, tumor parenchymal cells, multiscale vasculature and ECM barriers will be integrated within a single 3D model via a programmable process, providing three potential therapeutic targets for multi-specific, high-throughput drug screening
项目总结/摘要 超过90%的可能通过临床前验证的候选药物最终未能获得批准 临床应用。这些失败的一个主要原因是传统的模型-单层培养的细胞 和实验室动物-在再现原生微环境的能力方面是有限的。公 证明了3D培养的细胞,通常是球体和支架,可以更接近地模仿它们的自然生长。 行为。新兴的类器官和3D生物打印技术已经发展到显着 提高这些3D平台的复杂性。然而,由于缺乏周围生物的指导, 提示,细胞的内在能力可能不足以驱动靶组织的自组织 在成熟和发育过程中发挥作用。动态模拟生理微环境 并在体外重建定向的细胞-细胞和细胞-ECM相互作用, 具体目标1,将嵌入生物化学和生物力学的3D支撑基质编织在一起, 线索这将通过可编程的3D打印带有细胞的ECM衍生材料与即时墨水配方以及随后通过封装的成纤维细胞引导ECM重塑来实现。具体目标2将 探索所产生的化学和机械双梯度是否可以指导多尺度血管化, 打印组织结构,这是组织工程的一个主要挑战。脉管系统的灌注性将 被评价。3D肿瘤模型将作为药物试验台组装,以研究基质屏障的形状 对治疗药物的耐药性。拟议的生物制造业有三项创新 策略,包括1)3D打印ECM衍生基质,具有生物墨水的动态可编程配方 和原位交联; 2)直接细胞迁移,ECM重塑,和血管生成与固定 生物化学和生物力学双梯度; 3)通过结合直接3D构建组织架构 生物打印和印后引导的重塑,朝着4D生物打印。如果成功,肿瘤实质细胞, 多尺度脉管系统和ECM屏障将通过可编程的 过程,为多特异性、高通量药物筛选提供了三个潜在的治疗靶点

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fanben Meng其他文献

Fanben Meng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fanben Meng', 18)}}的其他基金

Programmable Construction of 3D in vitro Disease Models Capturing Microenvironment Heterogeneity
捕获微环境异质性的 3D 体外疾病模型的可编程构建
  • 批准号:
    10704191
  • 财政年份:
    2016
  • 资助金额:
    $ 12.15万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 12.15万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 12.15万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 12.15万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了