Project 3 - Mapping Long-range Allosteric Pathways in CRISPR-Cas9
项目 3 - 绘制 CRISPR-Cas9 中的长程变构途径
基本信息
- 批准号:10271625
- 负责人:
- 金额:$ 37.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAllosteric RegulationAmino AcidsBindingBiochemicalBiologicalBiological AssayBiological ModelsBiological ProcessBiomedical EngineeringBiophysicsCRISPR/Cas technologyCell physiologyCenters of Research ExcellenceChemicalsClustered Regularly Interspaced Short Palindromic RepeatsCommunicationCommunity NetworksComputational BiologyComputer SimulationComputing MethodologiesCouplingCrystallizationDNADNA BindingDataDiseaseEngineeringEnsureEnzymesEquilibriumGene TargetingGenomeGenomicsGuide RNAInvestigationKnowledgeLaboratoriesLengthLinkMapsMethodsModernizationModificationMolecularMolecular BiologyMolecular ConformationMotionMutationNuclear Magnetic ResonanceNucleotidesPathogenicityPathologyPathway AnalysisPathway interactionsPlayProcessProtein BiochemistryProteinsRNA BindingRegulationRegulator GenesRelaxationRoentgen RaysRoleSignal PathwaySignal TransductionSiteSpecificityStructureTertiary Protein StructureTherapeuticWorkbasebiophysical analysiscomputer studiesdesigndrug discoveryds-DNAenzyme mechanismexperimental studyflexibilitygenome editinghuman diseaseimprovedin vivoinsightinterdisciplinary approachmillisecondmolecular dynamicsmutantnovelnovel strategiesnucleaseprecision medicineprotein functionrecruitresponsescaffoldsimulationsmall molecule inhibitorsuccesstheoriestherapeutic enzymetool
项目摘要
Project Summary
Gene regulatory mechanisms are critical for proper cellular and protein function, and modern molecular
biology has linked numerous pathologies to dysregulation of these processes. Although modification of
the genome to correct pathogenic mutations is a promising therapeutic approach, these efforts cannot
be successful without knowledge of the underlying biochemistry of protein machinery such as CRISPR-
Cas9 (Cas9). Cas9 can be a customizable tool to edit and correct disease-linked (genomic) mutations,
however, to fully realize these applications, novel strategies to overcome its off-target effects and poor
temporal control must be investigated. Cas9 utilizes a guide RNA molecule to recruit, stabilize, and
facilitate cleavage of double-stranded DNA after recognition of a well-known protospacer adjacent motif
(PAM) sequence. Prior X-ray crystal structures indicate that conformational changes within the Cas9
nucleases, HNH and RuvC, are required for effective catalytic function. However, these structures offer
little mechanistic information, as the target DNA and catalytic nucleases are never observed in an
activated state. The conformational shift of HNH, in particular, is correlated to motions of neighboring
subdomains, all of which are activated from >20 Å away by the PAM-binding domain, suggesting an
allosteric mechanism. Understanding this allosteric coupling would have exciting potential for precision
medicine by establishing novel paradigms to control and enhance the spatial and temporal function of
Cas9. We recently identified a pathway of millisecond timescale motions spanning the HNH nuclease
and reaching multiple Cas9 domains that computational results suggest is a portion of a larger allosteric
network that controls Cas9 function. To investigate the reach of this allosteric network and the role of
molecular motions in its mechanism, my laboratory will undertake a synergistic solution NMR and
computational study to map the long-range allosteric pathway of Cas9. We will now (1) characterize
allosteric mutants of HNH that are known to alter Cas9 specificty, (2) establish the biophysical roles of
the neighboring REC2 and REC3 domains in propagating allosteric signals to/from HNH, and (3)
characterize the conformational ensemble governing the full-length Cas9 protein. This multidisciplinary
approach of NMR spin relaxation experiments, molecular dynamics simulations, and network theory, will
probe multi-timescale protein motions in Cas9, revealing specific amino acids responsible for transmitting
structural or dynamic information. These studies will use both full-length Cas9 and novel engineered
constructs to interrogate specific domains within the 160 kDa enzyme. The structural and dynamic
findings of this work will be correlated to function with new in vivo assays to provide a detailed
understanding of the Cas9 allosteric mechanism.
项目摘要
基因调节机制对于适当的细胞和蛋白质功能至关重要,现代分子
生物学将许多病理与这些过程的失调联系起来。虽然修改
纠正致病突变的基因组是一种有希望的疗法,这些努力不能
在不了解蛋白质机械的基本生物化学(例如CRISPR-)的情况下取得成功
CAS9(CAS9)。 CAS9可以是编辑和纠正疾病连接(基因组)突变的可自定义工具,
但是,为了充分实现这些应用,要克服其脱靶效应和差的新型策略
必须研究临时控制。 CAS9利用指南RNA分子募集,稳定和
在识别众所周知的蛋黄邻近基序后,促进双链DNA的裂解
(PAM)序列。先前的X射线晶体结构表明CAS9内的会议变化
有效的催化功能需要核酸酶HNH和RUVC。但是,这些结构提供
几乎没有机械信息,因为在一个目标中从未观察到目标DNA和催化核。
激活状态。特别是HNH的会议转变与邻近的动作有关
亚域,所有这些都从> 20Å远的pam结合域激活,这表明
变构机制。了解这种变构耦合将具有精确的激动人心的潜力
通过建立新的范式来控制和增强新型范式来控制和增强的空间和临时功能
Cas9。我们最近确定了跨越HNH核酸酶的毫秒时尺度运动的途径
并达到多个CAS9域,计算结果表明是较大变构的一部分
控制CAS9功能的网络。调查这种变构网络的影响及
我的实验室将在其机理中进行分子运动,将进行协同解决方案NMR,并进行
绘制CAS9的远程变构途径的计算研究。我们现在(1)描述
已知会改变CAS9特异性的HNH的变构突变体,(2)建立生物物理作用
在向HNH传播变构信号时,相邻的REC2和REC3域,(3)
表征统治全长cas9蛋白的构象合奏。这个多学科
NMR自旋松弛实验,分子动力学模拟和网络理论的方法将
探针在Cas9中的多次量度蛋白质运动,揭示了负责传输的特定氨基酸
结构或动态信息。这些研究将使用全长Cas9和新颖的工程
构造以询问160 kDa酶内的特定域。结构和动态
这项工作的发现将与新的体内测定法相关联,以提供详细的
了解CAS9变构机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE LISI其他文献
GEORGE LISI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE LISI', 18)}}的其他基金
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
- 批准号:
10708796 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
- 批准号:
10521825 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Mapping Long‐range Allosteric Pathways in CRISPR‐Cas9
绘制 CRISPR-Cas9 中的长程变构途径
- 批准号:
10350163 - 财政年份:2020
- 资助金额:
$ 37.74万 - 项目类别:
相似国自然基金
基于钙敏感受体的不同激活状态进行多肽变构调节剂筛选以及结构导向的化学修饰改造
- 批准号:22307113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GABAB受体复合体变构调节的生理和病理研究
- 批准号:32330049
- 批准年份:2023
- 资助金额:221 万元
- 项目类别:重点项目
热休克蛋白90对calpain-1的变构调节机制及其对鸡肉嫩度的影响
- 批准号:32372406
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
P2X3靶向的无味觉失调的变构调节新策略及用于缓解原因未明难治性咳嗽的新分子发现
- 批准号:32371289
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
AMPA受体正向变构调节剂快速抗抑郁作用及其神经机制研究
- 批准号:82371524
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
Studies of Allostery between Multi-domain Proteins and Nucleic Acid Complexes
多结构域蛋白与核酸复合物的变构研究
- 批准号:
10331326 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
Elucidating Angular Protein Motion using Kinetic Ensemble Refinement
使用动力学系综细化阐明角蛋白运动
- 批准号:
10203376 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
Studies of Allostery between Multi-domain Proteins and Nucleic Acid Complexes
多结构域蛋白与核酸复合物的变构研究
- 批准号:
10545750 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10021672 - 财政年份:2019
- 资助金额:
$ 37.74万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10216306 - 财政年份:2019
- 资助金额:
$ 37.74万 - 项目类别: