Regulation of Vascular Smooth Muscle Cell Phenotype by a Novel Isoform of Glucose-6-Phosphate Dehydrogenase
新型葡萄糖-6-磷酸脱氢酶异构体对血管平滑肌细胞表型的调节
基本信息
- 批准号:10561265
- 负责人:
- 金额:$ 70.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAffectAfricanArteriesBiologyBlood VesselsCardiovascular systemCarotid ArteriesCause of DeathCell NucleusCessation of lifeChromatinCoronary ArteriosclerosisCoronary arteryDNADNA BindingDNA MethylationDNA Modification MethylasesDNase-I FootprintingDevelopmentDiseaseEnzymesEpigenetic ProcessEvolutionExperimental DesignsFAIRE sequencingFrequenciesGene ExpressionGene Expression ProfileGenesGenetic PolymorphismGenetic TranscriptionGlucosephosphate DehydrogenaseGoalsGrowthHeart failureHigh Fat DietHistonesHumanHypertensionIndividualInflammatoryInjuryKnowledgeLaboratoriesLifeLinkLysineMechanicsMedicineMetabolicMetabolic syndromeMetabolismMethylationModelingModernizationModificationMolecular WeightNADPNuclearObesityOxidation-ReductionPathogenesisPathogenicityPathologyPhenotypePredispositionPropertyProtein IsoformsProteinsPulmonary artery structureRattusRegulationRepressionRoleSignal TransductionSingle Nucleotide PolymorphismSmooth Muscle MyocytesSwitch GenesTechnologyTestingVariantVascular DiseasesVascular Smooth MuscleVascular remodelingarterial stiffnessdesignepigenomeepigenomicsgain of functionglucose metabolismhistone methylationloss of functionmetabolomicsmigrationmyocardinnew therapeutic targetnovelpreventprime editingpromoterthrombotictranscription factor
项目摘要
Vascular diseases continue to be a major cause of death in the US and worldwide. It has been proposed that metabolic
reprogramming and increased glucose-6-phosphate dehydrogenase (G6PD) activity and expression contribute to the
pathogenesis of fatal angioproliferative vasculopathies. Moreover, some studies suggest individuals with a loss-of-
function G6PD (Mediterranean or African) variant – S188F (G6PDS188F; Type A-; severe deficiency) or N126D
(G6PDN126D; Type A; mild deficiency) nonsynonymous single nucleotide polymorphism – have lower frequencies of
coronary artery disease. However, G6PD-driven pathogenic and G6PD variant-associated protective mechanisms
affecting vascular diseases remain elusive. We therefore propose to determine potential mechanisms, driven by a newly
discovered G6PD isoform in the nucleus of vascular smooth muscle cells (VSMCs), that contribute to pathogenic large
artery stiffness and remodeling. Based on strongly supporting preliminary results, we hypothesized that nuclear G6PD
is a modulator of epigenetic modifiers and is a transcription regulator in VSMCs. Consequently, the loss-of-function
G6PD (S188F, N126D) variants block maladaptive modifications of the epigenome, reducing large artery elastance and
remodeling elicited by obesity/metabolic syndrome and balloon-injury. We will test this hypothesis in three specific
aims. In Aim 1, we will test the hypothesis that G6PD and/or G6PD-coordinated redox in the nucleus controls the
expression and activity of epigenetic modifiers (DNA methyltransferases (DNMT) and DNA (TET) and histone
(JARID) demethylases) and transcription of genes that encode proteins involved in regulating the differentiation
(contractile) and dedifferentiation (pro-inflammatory, -thrombotic, and -proliferative) phenotypes in VSMCs. In Aim 2,
we will determine whether loss-of-function G6PD variants detach from epigenetic modifiers to increase DNA
methylation, suppress histone3-lysine4 trimethylation, and reduce transcription of genes that confer maladaptive (pro-
inflammatory, -thrombotic, and -proliferative) properties to VSMCs. In Aim 3, we will determine whether G6PD variant
rats express fewer maladaptive epigenetic (histone3-lysine4 trimethylation) changes and develop less large artery
elastance (stiffness) and vascular remodeling than wild-type rats fed a high-fat diet (a model of obesity/metabolic
syndrome) or subjected to carotid artery balloon-injury. The results from gain-of-function and loss-of-function studies
of this project will reveal the direct effect of G6PD on gene expression associated with pathogenic vascular remodeling
and large artery stiffness, which lead to heart failure and death. We foresee two significant impacts on vascular biology:
[1] linkage of heretofore unknown G6PD-dependent subcellular redox in the nucleus directly to the fundamental
transcriptional mechanics and gene transcription in vascular pathobiology and [2] development of new treatments
targeting redox signaling to reduce large artery stiffness and remodeling.
在美国和全球,血管疾病仍然是死亡的主要原因。已经提出了代谢
重编程和增加的6-磷酸葡萄糖脱氢酶(G6PD)活性和表达有助于
致命的血管增生性血管病的发病机理。此外,一些研究表明,患有丧失的人
功能G6PD(地中海或非洲)变体 - S188F(G6PDS188F; A型;严重缺陷)或N126D
(G6PDN126D; A型;轻度缺陷)非nonyny单核苷酸多态性 - 具有较低的频率
冠状动脉疾病。但是,G6PD驱动的致病性和G6PD变体相关的保护机制
影响血管疾病仍然难以捉摸。因此,我们建议确定由新的潜在机制
在血管平滑肌细胞(VSMC)的核中发现的G6PD同工型,有助于致病性较大
动脉刚度和重塑。基于强烈支持初步结果,我们假设核G6PD
是表观遗传修饰剂的调节剂,是VSMC中的转录调节剂。因此,功能丧失
G6PD(S188F,N126D)变体阻止表观遗传组的适应不良修饰,从而减少了大动脉弹性和
肥胖/代谢综合征和气球伤害引起的重塑。我们将以三个特定的特定方式检验该假设
目标。在AIM 1中,我们将检验以下假设:核中G6PD和/或G6PD协调的氧化还原控制
表观遗传修饰剂(DNA甲基转移酶(DNMT)和DNA(TET)和组蛋白的表达和活性
(JARID)脱甲基酶)和编码参与调节分化的蛋白质的基因的转录
(收缩)和DeDiventiation(促炎, - 脉络性和 - 增殖)在VSMC中的表型。在AIM 2中,
我们将确定功能丧失的G6PD变体是否从表观遗传修饰符中脱离以增加DNA
甲基化,抑制组蛋白3-赖氨酸三甲基化,并减少会导致适应不良的基因的转录
VSMCS的炎症, - 脉络性和增生剂)特性。在AIM 3中,我们将确定G6PD变体是否
大鼠表现出更少的不良适应性表观遗传(组蛋白3-赖氨酸三甲基化),并且发生较小的动脉
弹性(刚度)和血管重塑比喂高脂饮食的野生型大鼠(肥胖/代谢模型
综合征)或受到颈动脉气球伤害。功能收益和功能丧失研究的结果
该项目的直接影响G6PD对与致病性血管重塑相关的基因表达的直接影响
和大动脉僵硬,导致心力衰竭和死亡。我们预见了对血管生物学的两个重大影响:
[1]迄今未知的G6PD依赖性亚细胞氧化还原直接与基本的连接
血管病理学中的转录力学和基因转录和[2]开发新疗法
靶向氧化还原信号,以减少大动脉刚度和重塑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SACHIN A GUPTE其他文献
SACHIN A GUPTE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SACHIN A GUPTE', 18)}}的其他基金
Regulation of Vascular Smooth Muscle Calcium by NADPH Redox
NADPH 氧化还原对血管平滑肌钙的调节
- 批准号:
7743739 - 财政年份:2008
- 资助金额:
$ 70.55万 - 项目类别:
Regulation of Vascular Smooth Muscle Calcium by NADPH Redox
NADPH 氧化还原对血管平滑肌钙的调节
- 批准号:
7372575 - 财政年份:2008
- 资助金额:
$ 70.55万 - 项目类别:
Regulation of Vascular Smooth Muscle Calcium by NADPH Redox
NADPH 氧化还原对血管平滑肌钙的调节
- 批准号:
7667028 - 财政年份:2008
- 资助金额:
$ 70.55万 - 项目类别:
Regulation of Vascular Smooth Muscle Calcium by NADPH Redox
NADPH 氧化还原对血管平滑肌钙的调节
- 批准号:
8204769 - 财政年份:2008
- 资助金额:
$ 70.55万 - 项目类别:
Regulation of Vascular Smooth Muscle Calcium by NADPH Redox
NADPH 氧化还原对血管平滑肌钙的调节
- 批准号:
7546523 - 财政年份:2008
- 资助金额:
$ 70.55万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Integrative and trans-ethnic study to understand psoriasis associated signals
了解银屑病相关信号的综合和跨种族研究
- 批准号:
10657973 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Leveraging GWAS Findings to Map Variants and Identify Novel Effector Genes for Alcohol-Related Traits
利用 GWAS 研究结果绘制变异图谱并识别酒精相关特征的新效应基因
- 批准号:
10657933 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Functional genomics of GxE in cardiovascular disease: BPA, phthalates and their interactions with gene regulation
GxE 在心血管疾病中的功能基因组学:BPA、邻苯二甲酸盐及其与基因调控的相互作用
- 批准号:
10337539 - 财政年份:2022
- 资助金额:
$ 70.55万 - 项目类别:
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10349639 - 财政年份:2022
- 资助金额:
$ 70.55万 - 项目类别:
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10706978 - 财政年份:2022
- 资助金额:
$ 70.55万 - 项目类别: