Methods for generalizing inferences from cluster randomized controlled trials to target populations
将整群随机对照试验的推论推广到目标人群的方法
基本信息
- 批准号:10563184
- 负责人:
- 金额:$ 34.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-04 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdjuvantAffectClinicalDataData CollectionData ScienceDependenceDoseEligibility DeterminationEnrollmentFundingHealthcare SystemsIndividualInfluenza vaccinationInterventionInvestmentsKnowledgeMachine LearningMethodologyMethodsModelingModernizationNursing HomesOutcomeParticipantPerformancePoliciesPopulationRandomizedRandomized, Controlled TrialsRecombinantsResearchResearch DesignResearch PersonnelSample SizeStatistical MethodsStructureTarget PopulationsUncertaintyUnited States National Institutes of Healthcluster trialdeep learningdesignflexibilityfollow-upinfluenza virus vaccineinterestmachine learning methodnovelnovel strategiesoptimal treatmentspractice settingrandom forestrandomized trialresponseroutine careroutine practicesimulationsupport vector machinetooltreatment effecttreatment strategyvaccination strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
Cluster trials are the study design of choice when interventions are best applied at the group level and when
exposure of one individual may affect the outcomes of other individuals in the same cluster. Cluster trials are
increasingly embedded within large health care systems, allowing the use of routinely collected data to
increase research efficiency. There is concern, however – and this proposal provides supportive evidence –
that randomized clusters are not representative the target populations seen in routine care. When treatment
effects vary over factors that influence trial participation, treatment effects from the trial cannot be directly
applied to real-world target populations of substantive interest. Thus, even in well-designed cluster trials,
selective participation can lead to bias in drawing causal inferences about the target population. Given the
increasing number of cluster trials being conducted, investigators need rigorous methods for generalizing
findings from cluster trials to target populations that address selective participation bias and can account for
multiple data science challenges, including stochastic dependence among observations in the same cluster;
availability of randomized trial data from only a few clusters or from clusters with relatively small sample sizes;
lack of knowledge of predictors of trial participation and the outcome, when candidate covariates often exceed
the number of available clusters and necessitate the use of flexible machine learning approaches; and missing
outcome data. In response to Notice of Special Interest NOT-LM-19-003, we propose novel, domain-
independent, reusable causal and statistical methods to address these data-science challenges and to
increase the ability of cluster trials to inform clinical and policy decisions by eliminating bias due to selective
participation when estimating average treatment effects and when estimating the optimal covariate-dependent
treatment strategy. We will evaluate the methods in realistic simulation studies and in empirical analyses using
data from 3 large-scale cluster trials of influenza vaccination strategies in U.S. nursing homes.
项目总结/摘要
当干预措施最好应用于组水平时,
一个人的暴露可能会影响同一群中其他人的结果。群集试验是
越来越多地嵌入到大型医疗保健系统中,允许使用常规收集的数据,
提高研究效率。然而,有人担心-这项建议提供了支持性证据-
随机分组不能代表常规护理中的目标人群。当治疗
影响试验参与的因素不同,试验的治疗效果不能直接
适用于具有实质性利益的现实目标人群。因此,即使在设计良好的群集试验中,
选择性参与可能导致在对目标人群进行因果推断时产生偏差。鉴于
越来越多的集群试验正在进行,研究人员需要严格的方法来概括
针对目标人群的群集试验的结果,解决了选择性参与偏倚,并可以解释
多种数据科学挑战,包括同一聚类中观测值之间的随机依赖性;
仅从少数几个群集或从样本量相对较小的群集中获得随机试验数据;
缺乏对试验参与和结局的预测因素的了解,当候选协变量通常超过
可用集群的数量,需要使用灵活的机器学习方法;以及缺少
结果数据。为了响应特别关注通知NOT-LM-19-003,我们提出了新的,领域-
独立的、可重复使用的因果和统计方法来解决这些数据科学挑战,
通过消除选择性偏倚,提高集群试验为临床和政策决策提供信息的能力。
估计平均治疗效应和估计最佳协变量依赖性时的参与
治疗策略我们将评估的方法在现实的模拟研究和实证分析使用
来自美国养老院流感疫苗接种策略的3项大规模群集试验的数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issa J. Dahabreh其他文献
Do Statins Impair Cognition? A Systematic Review and Meta-Analysis of Randomized Controlled Trials
- DOI:
10.1007/s11606-014-3115-3 - 发表时间:
2015-01-10 - 期刊:
- 影响因子:4.200
- 作者:
Brian R. Ott;Lori A. Daiello;Issa J. Dahabreh;Beth A. Springate;Kimberly Bixby;Manjari Murali;Thomas A. Trikalinos - 通讯作者:
Thomas A. Trikalinos
Benchmarking Observational Analyses Against Randomized Trials: a Review of Studies Assessing Propensity Score Methods
- DOI:
10.1007/s11606-020-05713-5 - 发表时间:
2020-03-19 - 期刊:
- 影响因子:4.200
- 作者:
Shaun P. Forbes;Issa J. Dahabreh - 通讯作者:
Issa J. Dahabreh
Causal Inference About the Effects of Interventions From Observational Studies in Medical Journals.
关于医学期刊观察研究干预效果的因果推论。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Issa J. Dahabreh;Kirsten Bibbins - 通讯作者:
Kirsten Bibbins
Adjusting for Selection Bias Due to Missing Eligibility Criteria in Emulated Target Trials
调整由于模拟目标试验中缺少资格标准而导致的选择偏差
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Luke Benz;Rajarshi Mukherjee;Issa J. Dahabreh;Rui Wang;David Arterburn;Catherine Lee;Heidi Fischer;Susan Shortreed;S. Haneuse - 通讯作者:
S. Haneuse
A COMPARISON OF METHODS TO EVALUATE THE REAL-WORLD SAFETY AND EFFECTIVENESS OF THE PERCUTANEOUS MICROAXIAL LEFT VENTRICULAR ASSIST DEVICE IN CARDIOGENIC SHOCK
- DOI:
10.1016/s0735-1097(22)02113-1 - 发表时间:
2022-03-08 - 期刊:
- 影响因子:
- 作者:
Zaid Almarzooq;Yang Song;Issa J. Dahabreh;Ajar Kochar;Enrico Ferro;Eric Alexander Secemsky;Robert W. Yeh - 通讯作者:
Robert W. Yeh
Issa J. Dahabreh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issa J. Dahabreh', 18)}}的其他基金
Methods for generalizing inferences from cluster randomized controlled trials to target populations
将整群随机对照试验的推论推广到目标人群的方法
- 批准号:
10362886 - 财政年份:2022
- 资助金额:
$ 34.01万 - 项目类别:
Use of Registries, Claims and Health System Data to Enhance the Evaluation of Cardiovascular Devices
使用注册、索赔和健康系统数据来加强心血管设备的评估
- 批准号:
10734959 - 财政年份:2017
- 资助金额:
$ 34.01万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.01万 - 项目类别:
Research Grant