Deep clinical trajectory modeling to optimize accrual to cancer clinical trials
深度临床轨迹建模可优化癌症临床试验的应计结果
基本信息
- 批准号:10561692
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAdultCancer ModelCancer PatientClassificationClinicalClinical DataClinical MedicineClinical TrialsComplexComputersDana-Farber Cancer InstituteDataData ScienceData ScientistDevelopmentDiagnosisDiseaseElectronic Health RecordEligibility DeterminationEnrollmentGoalsGovernmentHealth Services ResearchHealth systemHealthcare SystemsHistologyIndustryInstitutionInterventionLabelLinkMachine LearningMalignant NeoplasmsManualsMedical RecordsMethodsModelingNatural Language ProcessingOncologistOncologyOutcomePathology ReportPatientsPhenotypePrimary NeoplasmRadiology SpecialtyRandomizedReportingResearchResearch PersonnelResourcesServicesSiteSourceStructureSystemic TherapyTechniquesTechnologyTextTherapeutic TrialsTimeTrainingWorkanticancer researchburden of illnesscancer carecancer clinical trialcare deliverycareerclinical candidateclinical practiceclinical trainingclinical trial enrollmentclinical trial protocolclinically relevantcohortdata registrydeep learningdesignelectronic health datagenomic dataimprovedinnovationlearning strategymachine learning modelmultiple data typesneoplasm registryneural network architecturenovelpalliativepatient populationprecision medicine clinical trialspreventprogramsresponseskillsstructured datasurvival predictiontooltransfer learningtrial readinesstumor progressionunstructured data
项目摘要
PROJECT SUMMARY/ABSTRACT
Electronic health records (EHRs) are now ubiquitous in routine cancer care delivery. The large volumes of data
that EHRs contain could constitute an important resource for research and quality improvement, but to date,
EHRs have not fully realized this potential. Important clinical endpoints, such as disease histology, stage,
response, progression, and burden, are often recorded in the EHR only in unstructured free-text form. Even
when structured data are available, they may be recorded only at one point in time, such as diagnosis, and
may not be as relevant later in a patient's dynamic disease trajectory. These barriers prevent scalable analysis
of EHR data for even relatively straightforward research tasks, such as identification of a cohort of patients
potentially eligible for clinical trials. Identifying patients for trials is an important challenge in cancer research,
since under 5% of adults with cancer have historically enrolled in therapeutic trials. Tools are in development to
better match patients to trials, but no such tools are both publicly available and capable of incorporating time-
specific patient phenotypes generated using unstructured EHR data. Recent rapid innovation in deep learning
techniques could provide novel solutions to these challenges. In ongoing work, I have found that natural
language processing based on a neural network architecture can reliably extract clinically relevant oncologic
endpoints from free-text radiology reports. My goal is to develop an independent research program focused on
leveraging such methods to put the EHR to use at scale for discovery and improving cancer care delivery. My
specific aims are (1) to develop and validate a clinically relevant, dynamic, pre-trained cancer trajectory model
by applying deep learning to integrated structured and unstructured EHR data; (2) to apply transfer learning to
a pre-trained cancer trajectory model to match patients to clinical trials using EHR data and clinical trial
protocols; and (3) to pilot the incorporation of cancer trajectory modeling into an institutional clinical trial
matching tool. In the near term, this work will facilitate accrual to clinical trials at our institution. During the
independent research portion of the proposal, it will constitute the basis for a general framework for conducting
scalable cancer research using EHR data.
项目摘要/摘要
电子健康记录(EHR)现在在常规癌症护理服务中无处不在。海量数据
EHR所包含的内容可以构成研究和质量改进的重要资源,但到目前为止,
EHR还没有完全实现这一潜力。重要的临床终点,如疾病组织学、分期、
回应、进展和负担通常只以非结构化的自由文本形式记录在EHR中。连
当结构化数据可用时,它们可能只在一个时间点被记录,例如诊断,以及
在患者的动态疾病轨迹中,可能不是那么相关。这些障碍阻碍了可伸缩分析
用于甚至相对简单的研究任务的电子病历数据,例如识别一群患者
可能有资格进行临床试验。在癌症研究中,确定患者进行试验是一个重要的挑战,
因为历史上不到5%的成年癌症患者参加了治疗试验。工具正在开发中,以
更好地将患者与试验相匹配,但没有这样的工具既公开可用,又能够结合时间-
使用非结构化电子病历数据生成的特定患者表型。最近深度学习领域的快速创新
技术可以为这些挑战提供新的解决方案。在正在进行的工作中,我发现这很自然
基于神经网络结构的语言处理可以可靠地提取与临床相关的肿瘤学
来自自由文本放射学报告的端点。我的目标是开发一个独立的研究项目,专注于
利用这些方法将EHR投入大规模使用,用于发现和改善癌症护理服务。我的
具体目标是(1)开发和验证临床相关的、动态的、预先训练的癌症轨迹模型
通过将深度学习应用于集成的结构化和非结构化EHR数据;(2)将迁移学习应用于
使用EHR数据和临床试验将患者与临床试验相匹配的预先训练的癌症轨迹模型
方案;以及(3)将癌症轨迹建模纳入机构临床试验的试点
匹配工具。在短期内,这项工作将促进我们机构临床试验的收益。在.期间
独立研究部分的提案,它将构成开展总体框架的基础
使用电子病历数据进行可扩展的癌症研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth L Kehl其他文献
Regression models for average hazard.
平均风险的回归模型。
- DOI:
10.1093/biomtc/ujae037 - 发表时间:
2024 - 期刊:
- 影响因子:1.9
- 作者:
Hajime Uno;Lu Tian;M. Horiguchi;Satoshi Hattori;Kenneth L Kehl - 通讯作者:
Kenneth L Kehl
Kenneth L Kehl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth L Kehl', 18)}}的其他基金
Deep clinical trajectory modeling to optimize accrual to cancer clinical trials
深度临床轨迹建模可优化癌症临床试验的应计结果
- 批准号:
10547984 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Deep clinical trajectory modeling to optimize accrual to cancer clinical trials
深度临床轨迹建模可优化癌症临床试验的应计结果
- 批准号:
10090579 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)