Developing a low cost, highly compact holographic imaging based microfluidic cell sorting system using 3D printing
使用 3D 打印开发低成本、高度紧凑的基于全息成像的微流体细胞分选系统
基本信息
- 批准号:10575747
- 负责人:
- 金额:$ 38.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAutomationAutomobile DrivingBiological AssayBlood CellsCancer DiagnosticsCancer cell lineCell SeparationCellsCellular MorphologyClinicalClinical TreatmentComputer softwareDetectionDevicesDiagnosisErythrocytesFlow CytometryHematological DiseaseHolographyHourImageLab On A ChipLeukocytesLiteratureMalignant NeoplasmsMedicalMedical ResearchMethodsMicrofluidic MicrochipsMicrofluidicsMicrospheresMissionNational Human Genome Research InstituteNeoplasm Circulating CellsOpticsOrganPatternPerformancePoint-of-Care SystemsPublic HealthReaction TimeResearchResolutionSamplingSickle CellSickle Cell AnemiaSortingSpecificitySpeedSystemTechniquesTechnologyTestingThree-Dimensional ImagingTimebioprintingclinical applicationclinical diagnosticscostdeep learningdensitydesigndisease diagnosticefficacy evaluationfabricationimage processingimaging capabilitiesimprovedliquid biopsymachine visionmetermicroscopic imagingminiaturizenew technologyoperationperformance testspersonalized cancer therapypoint-of-care diagnosticsprototypesensorsingle cell analysis
项目摘要
SUMMARY
With advancement in machine vision and deep learning, imaging-based microfluidics have demonstrated their
potential to serve as precise single cell analysis and sorting devices for various challenging medical applications
including bioprinting and cell patterning, sorting rare cells (e.g., circulating tumor cells, sickle cells) from blood
for disease (e.g., cancer, sickle diseases) diagnosis, etc. However, current imaging-based microfluidic cell
sorting systems suffer from the issues of low throughput and world-to-chip interfacing. These issues are largely
related to the shallow depth of field of conventional microscopic imaging, which significantly restricts the number
of cells that can be analyzed per image and increases the complexity and cost involved in fabricating cell sorting
chips integrated with imaging and valve actuation capabilities. These issues limit the implementation of such
microfluidic systems in clinical diagnostics and treatment, particularly in which target cells are extremely rare in
samples. Although different types of high throughput cell sorting microfluidic systems have been developed, they
either have insufficient sorting precision or require the integration of different sorting methods, which further
increases the system complexity and lowers its reliability.
This exploratory R21 project aims to develop a high throughput, low cost and compact solution for imaging-
based cell sorting microfluidic devices to improve their appeal for critical clinical applications. Our solution utilizes
3D holographic imaging to overcome the depth of field issue of conventional microscopic imaging, increase the
specificity of cell detection, and enables high throughput and high precision cell sorting using microfluidics. We
will use multi-material 3D printing technique to generate fast responsive sorting valves and miniaturized
holographic imaging sensors with performance that exceeds the ones in the literature. Our approach will not
only substantially reduce the cost, time, and enhance the degree of automation for fabricating these microfluidic
devices, but also enable sleek and compact microfluidic design, contamination-free fabrication, and superior and
consistent imaging quality during hours of operation that is essential for many clinical operations. The 3D printing
approach developed in this project can provide the basis for low cost and high efficiency fabrication of a broad
range of microfluidic devices used in medical research and clinical applications (e.g., lab-on-a-chip diagnostics,
point-of-care systems, organ replication-on-a-chip, and bioassays). The integration of 3D imaging capability with
3D printing will enable new designs of high throughput, high precision, and high specificity microfluidic systems
with versatile functionalities that are not available in conventional microfluidics used in medical field. In particular,
the cell sorting devices fabricated in this proposed project can significantly speed up the cell-based liquid biopsy
for cancer diagnostics and personalized cancer treatment.
总结
随着机器视觉和深度学习的进步,基于成像的微流体技术已经证明了其
可作为精确的单细胞分析和分选设备,用于各种具有挑战性的医疗应用
包括生物打印和细胞图案化,分选稀有细胞(例如,循环肿瘤细胞、镰状细胞)
对于疾病(例如,癌症、镰状病)诊断等。然而,目前基于成像的微流体细胞
分选系统遭受低吞吐量和世界到芯片接口的问题。这些问题主要是
这与常规显微成像的浅景深有关,其显著限制了
并且增加了制造细胞分选的复杂性和成本
集成了成像和阀门驱动功能的芯片。这些问题限制了此类措施的实施。
微流体系统在临床诊断和治疗中的应用,特别是在靶细胞极其罕见的情况下,
样品尽管已经开发了不同类型的高通量细胞分选微流体系统,但是它们
或者分选精度不足,或者需要集成不同的分选方法,
增加了系统的复杂性并降低了其可靠性。
这个探索性的R21项目旨在开发一种高通量、低成本和紧凑的成像解决方案,
基于细胞分选的微流控设备,以提高其对关键临床应用的吸引力。我们的解决方案利用
3D全息成像克服了传统显微成像的景深问题,增加了
细胞检测的特异性,并且能够使用微流体进行高通量和高精度细胞分选。我们
将使用多材料3D打印技术来生成快速响应的分选阀和小型化
全息成像传感器的性能超过文献中的那些。我们的方法不会
仅实质上降低了制造这些微流体的成本、时间并提高了自动化程度
设备,而且还能够实现光滑和紧凑的微流体设计,无污染的制造,以及上级和
在操作时间内保持一致的成像质量,这对于许多临床操作至关重要。3D打印
本项目开发的方法可以为低成本、高效率地制造宽
用于医学研究和临床应用的微流体装置的范围(例如,芯片实验室诊断,
即时护理系统、芯片上器官复制和生物测定)。3D成像功能与
3D打印将实现高通量、高精度和高特异性微流体系统的新设计
具有在医学领域中使用的传统微流体中不可用的多功能性。特别是,
在该项目中制造的细胞分选装置可以显著加快基于细胞的液体活检
用于癌症诊断和个性化癌症治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiarong Hong其他文献
Jiarong Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 38.98万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 38.98万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 38.98万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 38.98万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant