Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
基本信息
- 批准号:10576701
- 负责人:
- 金额:$ 23.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAfrica South of the SaharaAfricanAftercareAlgorithmsAntimalarialsAppearanceArtificial IntelligenceBasic ScienceBehaviorBiologicalBiologyBiomedical EngineeringBiopsyBloodBreedingBrightfield MicroscopyCause of DeathCellsCessation of lifeChildClassificationClinicClinicalCollaborationsColorCommunicable DiseasesComputer Vision SystemsComputing MethodologiesConsumptionDataData SetData SourcesDerivation procedureDetectionDevelopmentDevicesDiseaseDrug ExposureDrug resistanceE-learningEngineeringEquipmentErythrocytesFilmFingersFunding MechanismsGenerationsGenetic TranscriptionGrantHemolysisHistologicHistopathologyImageImage AnalysisImaging problemImmune systemInfectionInternationalLabelLaboratoriesLife Cycle StagesLiverLongevityMachine LearningMalariaManualsMethodsMicroscopyModelingModernizationMolecularMonitorNetwork-basedOutcomeParasitesParasitologyPathologyPerformancePlasmodiumPlasmodium falciparumPopulationPrediction of Response to TherapyPredispositionPreparationPrincipal InvestigatorProcessPrognosisPublic HealthReproducibilityResearchResearch InstituteResearch PersonnelResolutionRunningScienceSemanticsSepsisSiteSlideSpecimenSpleenStainsSurfaceSurveysTechniquesTechnologyTimeTissuesTrainingTreatment EfficacyUniversitiesVariantVisualWorkalgorithm trainingbiomedical imagingcell injurycellular pathologycostdata acquisitiondeep learningdeep neural networkdesigndetection platformdigitalexperienceinnovationlearning strategylight microscopymedical schoolsmicroscopic imagingminiaturizeneural networknext generationnovelpre-clinicalpreservationprotein expressionprotein metabolismprototypestatisticssuccesssupervised learningtoolvisual information
项目摘要
PROJECT SUMMARY/ABSTRACT
Among the “big three” infectious diseases worldwide, malaria stands out for the complexity of the Plasmodium
life-cycle and biology. Malaria parasites breed mainly within red blood cells, and across their lifespan there are
dramatic shifts in protein expression and metabolism that alter their appearance, behavior, and susceptibility to
clearance by the host immune system or antimalarial drugs. Because it is an infection of the blood, a biopsy
can be taken with a simple finger prick, and the ability to derive histopathological information via light
microscopy is a critical tool in the study of, and ultimately control and treatment of, malaria. Manual review is
painstaking and imperfect. Neural network-based computer vision (CV) approaches can accelerate data
acquisition from light microscopy and innovate new methods of extracting data currently only possible through
costly, labor-intensive benchtop molecular methods or time-consuming review by a small number of malaria
microscopy experts with the necessary training and experience to distinguish subtle differences between
parasite forms.
This R21 proposal builds on 12 months of preparatory work supported by a pilot grant from The Johns
Hopkins University Institute for Data Intensive Engineering and Science, a collaborative pursuit of the Schools
of Medicine and Engineering. The co-principal investigators developed a deep learning-based CV algorithm
trained on a public dataset of >10,000 images of Plasmodium falciparum ring stage parasites that can detect
and quantify parasites with >0.97 accuracy. However, significantly more information is ripe for extraction from
malaria smears beyond the simple detection of parasites. We built an early prototype of a 2nd-generation CV
algorithm capable of identifying the correct parasite stage to the level of early, middle or late ring stage with
>0.80 accuracy, and in this proposal we aim to refine the performance and extend the capabilities of the
malaria CV system to wider applications while pioneering new computational methods in multiple domain
adaptation and weakly- and semi-supervised learning.
The proposed project would result in the development of a next-generation malaria CV system that can
derive molecular data from brightfield images for use by investigators at the bench or in the clinic. We will build
out the prototype CV system to optimize performance, develop higher-order classifiers (e.g., differentiating
viable from nonviable circulating parasites, finding once-infected cells for the prognosis of delayed hemolysis
after treatment), and run the algorithm against different tissue backgrounds (e.g., liver, spleen). The product of
this work will be a cutting-edge neural network-based malaria CV system that provides a multiplex readout of
parasite biological parameters and cellular pathology to help propel the fields of malaria research and
biomedical CV analysis forward.
项目总结/摘要
在全球“三大”传染病中,疟疾因疟原虫的复杂性而脱颖而出
生命周期和生物学。疟疾寄生虫主要在红细胞内繁殖,在它们的一生中,
蛋白质表达和代谢的巨大变化,改变了它们的外观,行为和对
通过宿主免疫系统或抗疟药物清除。因为这是血液感染,活组织检查
可以通过一个简单的手指针刺,并通过光获得组织病理信息的能力,
显微镜是研究疟疾并最终控制和治疗疟疾的关键工具。人工审核是
艰苦而不完美基于神经网络的计算机视觉(CV)方法可以加速数据处理
从光学显微镜采集和创新的新方法提取数据目前只能通过
昂贵的、劳动密集型的台式分子方法或由少数疟疾患者进行耗时的审查
显微镜专家与必要的培训和经验,以区分之间的细微差异
寄生虫形成。
这项R21提案建立在12个月的准备工作的基础上,由约翰的试点赠款支持
霍普金斯大学数据密集型工程和科学研究所,学校的合作追求
医学与工程系联合主要研究人员开发了一种基于深度学习的CV算法
在包含> 10,000张恶性疟原虫环期寄生虫图像的公共数据集上进行训练,
并以>0.97的准确度定量寄生虫。然而,更多的信息是成熟的提取,
疟疾涂片不仅仅是检测寄生虫。我们建造了第二代CV的早期原型,
算法能够识别正确的寄生虫阶段的水平,早期,中期或后期环阶段,
>0.80精度,在本提案中,我们的目标是改进性能并扩展
疟疾CV系统,以更广泛的应用,同时开拓新的计算方法,在多个领域
自适应和弱监督和半监督学习。
拟议的项目将导致开发下一代疟疾CV系统,
从明场图像中获得分子数据,供研究人员在实验室或诊所使用。我们将建立
原型CV系统以优化性能,开发高阶分类器(例如,区分
从不能存活的循环寄生虫中存活,发现一次感染的细胞用于延迟溶血的预后
治疗后),并针对不同的组织背景(例如,肝、脾)。的产物
这项工作将是一个先进的基于神经网络的疟疾CV系统,它提供了一个多路读出,
寄生虫生物学参数和细胞病理学,以帮助推动疟疾研究领域,
生物医学CV分析向前。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin D Haeffele其他文献
Benjamin D Haeffele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin D Haeffele', 18)}}的其他基金
SCH: A Computer Vision and Lens-Free Imaging System for Automatic Monitoring of Infections
SCH:用于自动监测感染的计算机视觉和无镜头成像系统
- 批准号:
10162472 - 财政年份:2019
- 资助金额:
$ 23.15万 - 项目类别:
SCH: A Computer Vision and Lens-Free Imaging System for Automatic Monitoring of Infections
SCH:用于自动监测感染的计算机视觉和无镜头成像系统
- 批准号:
10408071 - 财政年份:2019
- 资助金额:
$ 23.15万 - 项目类别:
SCH: A Computer Vision and Lens-Free Imaging System for Automatic Monitoring of Infections
SCH:用于自动监测感染的计算机视觉和无镜头成像系统
- 批准号:
10019459 - 财政年份:2019
- 资助金额:
$ 23.15万 - 项目类别:
相似国自然基金
基于语义理解的中文地址匹配关键技术研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于众源地址数据的标准地址集智能化构建方法研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向空间语义建模与检索的城市地址图模型研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
新型智慧城市地名地址数据融合治理关键技术研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于SDN的动目标防御网络关键技术研究
- 批准号:61702535
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.15万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.15万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.15万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.15万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.15万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.15万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.15万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.15万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.15万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.15万 - 项目类别:
Research Grant