Exploratory Research Project - ADAPT
探索性研究项目 - ADAPT
基本信息
- 批准号:10577122
- 负责人:
- 金额:$ 10.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-05 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptionAgeAlgorithmsBig DataCaringClinicClinicalComplexComprehensive Health CareDataData CollectionData ScientistData SetData SourcesDevelopmentDisparity populationEffectivenessElectronic Health RecordEnvironmentEquityEthnic OriginEvaluationFeedbackFollow-Up StudiesFoundationsFundingHealthHealth Care VisitHealth PromotionHealth systemHealthcareHealthcare SystemsIndividualInstitutionInsurance CoverageInterventionKnowledgeLearningMachine LearningManualsMapsMental HealthModelingMood DisordersNational Institute of Mental HealthOrganizational AffiliationPatientsPerformancePreventionPrevention ResearchPrimary CareProcessPrognosisRaceResearchResearch PersonnelResearch Project GrantsRiskRisk FactorsSocioeconomic StatusSubgroupSuicideSuicide attemptSuicide preventionSystemTechniquesTechnologyTestingTimeTrainingTranslatingTranslationsUnited StatesUse EffectivenessValidationVisitWorkadvanced analyticsage groupclinical data repositoryclinical diagnosisclinical practiceclinical predictorscohortdata integrationdata modelingdeep learningdeep neural networkdesigneffective interventionethnic minorityevidence basehealth care deliveryhealth care servicehealth disparityheterogenous datahigh riskhigh risk populationhuman-in-the-loopimplementation facilitatorsimprovedinformatics toolinnovationinterestlearning progressionlearning strategymachine learning prediction algorithmmarginalized populationmedical schoolsmedical specialtiespatient populationpilot testpredictive modelingpredictive toolsracial minorityrisk predictionrisk prediction modelsexsocial disparitiessuccesssuicidal riskusability
项目摘要
ADAPT (EXPLORATORY PROJECT): SUMMARY/ABSTRACT
Significance: Machine learning-based risk algorithms have transformational potential to improve suicide risk
identification. However, the lack of large-scale validations, transfer guidance, and automated learning-based
adaptation impedes adoption in clinical practice. This project aims to address this translation gap by
systematically assessing and improving a suicide risk algorithm’s generalizability and adaptability from an
original development setting to a new healthcare system.
Investigators: The transdisciplinary team has comprehensive expertise in applying advanced machine
learning techniques on electronic health record (EHR) data for predictive modeling and prevention analytics (Liu,
Aseltine, Simon), studying clinical diagnosis, prognosis and treatment of serious mood disorders and suicide
(Rothschild), identifying and assessing suicide risk (Simon), and promoting health services delivery redesign
through technology and implementing informatics tools in clinical settings (Gerber).
Innovation: This pioneering study will comprehensively evaluate and improve the generalizability and
adaptability of an evidence-based suicide risk algorithm in different contexts. The team will build a unified pipeline
of Automated, Data-driven, AdaPtable, and Transferable learning for suicide risk prediction (ADAPT). The
versatile ADAPT tool will be accessible to non-expert users and compatible with EHR common data model
standards, providing a scalable, interpretable and sustainable solution to risk algorithm translation across
different clinical contexts. Moreover, we will design an advanced deep learning approach for suicide risk
prediction and evaluate its effectiveness on generalizability and adaptability.
Approach: The proposed study aims to assess the generalizability of the Mental Health Research Network
(MHRN) risk algorithm and explore transfer and ensemble learning to adapt a previously learned model from
original data sources into a tailored one optimized for a new health system (Aim 1); develop a unified pipeline,
ADAPT, to integrate data preprocessing, model assessment and adaptation, model interpretation, and
automated learning; explore how ADAPT’s results can be used to help match individuals to a range of
intervention approaches where specialized or intensive treatment is reserved for those with the highest risk
(Aim 2); design an innovative deep learning approach and test its effectiveness using ADAPT (Aim 3a); engage
stakeholders to better understand potential barriers and facilitators to implementation, iteratively improve
ADAPT’s usability, acceptability, and feasibility through their feedback using validated scales (Aim 3b).
Environment: The UMass Chan Medical School (UMass) has proven its ability to support this ambitious
study by its success with numerous NIMH-funded systems-based suicide prevention studies.
Impact: The study holds great potential for promoting the implementation of an evidence-based EHR suicide
risk algorithm in clinical practice. Paired with effective interventions, it will enable improved suicide prevention.
ADAPT(探索性项目):总结/摘要
意义:基于机器学习的风险算法具有改善自杀风险的变革潜力
识别.然而,缺乏大规模的验证,转移指导和基于自动学习的
适应阻碍了临床实践中的采用。该项目旨在通过以下方式解决这一翻译差距
系统地评估和改进自杀风险算法的通用性和适应性,
新的医疗保健系统的原始开发环境。
研究人员:跨学科团队在应用先进机器方面具有全面的专业知识
用于预测建模和预防分析的电子健康记录(EHR)数据的学习技术(Liu,
Aseltine,Simon),研究严重情绪障碍和自杀的临床诊断、预后和治疗
(罗斯柴尔德),确定和评估自杀风险(西蒙),并促进卫生服务提供重新设计
通过技术和在临床环境中实施信息学工具(Gerber)。
创新:这项开创性的研究将全面评估和提高普遍性,
基于证据的自杀风险算法在不同情况下的适应性。该团队将建立统一的管道
自动化,数据驱动,可适应和可转移的自杀风险预测学习(ADAPT)。的
非专家用户可以使用通用的ADAPT工具,并与EHR通用数据模型兼容
标准,为风险算法翻译提供可扩展、可解释和可持续的解决方案,
不同的临床背景。此外,我们还将设计一种先进的深度学习方法,
预测和评价其推广性和适应性。
方法:拟议的研究旨在评估心理健康研究网络的普遍性
(MHRN)风险算法,并探索转移和集成学习,以适应先前学习的模型,
将原始数据源转化为针对新卫生系统优化的定制数据源(目标1);开发统一的管道,
ADAPT,集成数据预处理、模型评估和适应、模型解释和
自动化学习;探索ADAPT的结果如何用于帮助将个人与一系列
干预方法,专门或强化治疗只针对风险最高的患者
(Aim 2)设计创新的深度学习方法,并使用ADAPT测试其有效性(目标3a);
利益相关者更好地了解实施的潜在障碍和促进因素,
通过使用经确认量表的反馈,评估ADAPT的可用性、可接受性和可行性(目标3b)。
环境:马萨诸塞大学陈医学院(UMass)已经证明了它有能力支持这一雄心勃勃的计划。
研究的成功与许多NIMH资助的基于系统的自杀预防研究。
影响:该研究具有很大的潜力,促进实施循证电子健康记录自杀
临床实践中的风险算法。配合有效的干预措施,它将有助于改善自杀预防。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feifan Liu其他文献
Feifan Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feifan Liu', 18)}}的其他基金
DeepCertainty: Deep Learning for Contextual Diagnostic Uncertainty Measurement in Radiology Reports
DeepCertainty:放射学报告中上下文诊断不确定性测量的深度学习
- 批准号:
10593770 - 财政年份:2023
- 资助金额:
$ 10.48万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Research Grant