Regulation of Autophagy-driven Pancreatic Beta Cell Function by Nutrient Sensor Proteins
营养传感器蛋白对自噬驱动的胰腺β细胞功能的调节
基本信息
- 批准号:10576283
- 负责人:
- 金额:$ 3.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-09 至 2025-02-08
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectApoptosisAutophagocytosisAutophagosomeBeta CellBiological AssayBiologyBlood GlucoseCause of DeathCell SurvivalCell physiologyCellsChronicCommunicationComplexCuesDataDedicationsDevelopmentDiabetes MellitusDiseaseEconomic BurdenEnvironmentEnzymesFRAP1 geneFailureFunctional disorderGene ExpressionGenus HippocampusGlucoseGoalsHealthHomeostasisHumanHyperglycemiaImaging TechniquesIn VitroInsulinIslets of LangerhansKnockout MiceKnowledgeLeadershipLifeLinkLipidsMentorsMetabolicMetabolic dysfunctionMetabolismMinnesotaMitochondriaModelingMusNon-Insulin-Dependent Diabetes MellitusNutrientO-GlcNAc transferaseOralOrganellesPathologyPathway interactionsPatientsPhasePhenotypePhosphotransferasesPhysiologicalPhysiologyPost-Translational Protein ProcessingPrediabetes syndromePrevalenceProcessProliferatingPropertyProteinsPublic HealthRecyclingRegulationResearchResourcesRespirationRiskShapesSignal PathwaySignal TransductionStressStructure of beta Cell of isletTSC2 geneTechnical ExpertiseTestingTherapeuticTrainingUniversitiesUp-RegulationWritingblood glucose regulationcareerdiabeticdiabetic patientextracellularglycosylationimprovedin vivoinhibitorinnovationinsulin secretionisletmitochondrial dysfunctionmortalitymouse modelnew therapeutic targetnovelpeptide O-linked N-acetylglucosamine-beta-N-acetylglucosaminidasepreventprotein expressionpublic health relevanceresponsesensorsuccesstargeted treatment
项目摘要
PROJECT SUMMARY/ABSTRACT
O-GlcNAc transferase (OGT) is a nutrient sensor protein which is highly expressed in pancreatic β-cells. This
enzyme exclusively catalyzes the post-translational glycosylation of target cytosolic and nucleic proteins (O-
GlcNAcylation). β-cell OGT knockout mice develop severe diabetic phenotype, suggesting that OGT is crucial in
shaping glucose homeostasis. The long-term goal of this research is to understand the mechanisms of how
protein O-GlcNAcylation shape β-cell health and function. Our data suggest a strong relationship between OGT
and mechanistic target of Rapamycin complex 1, mTORC1, a key nutrient-sensor kinase in β-cells. While
aberrant autophagy and chronic mTORC1 activation is observed in islets from human diabetic patients, the
mechanisms of how these signaling pathways become dysregulated is unknown. We propose that in response
to nutrient stress, protein O-GlcNAcylation directly regulates mTORC1 activity and subsequent downstream
mitochondrial function through the process of autophagy. Our central hypothesis is that in nutrient stress
conditions, decreased O-GlcNAcylation leads to insulin secretion deficits through hypo-activation of mTORC1
and hyper-activation of autophagy. The main objective of this proposal is to delineate the signaling between OGT
and mTORC1-autophagy and their contribution to β-cell health and function. Specific Aim 1 will investigate how
O-GlcNAcylation regulates mTORC1 activity and β-cell mass and function. Specific Aim 2 will test whether O-
GlcNAcylation modulates autophagy in β-cells and to determine the consequences of dysregulated autophagy
in organelle homeostasis. This F31 proposal is innovative because there are currently no studies linking OGT
and mTORC1 crosstalk in pancreatic islets and their regulation of autophagy-dependent β-cell mass and insulin
secretion. Successful completion of the proposal will reveal the mechanisms linking nutrient stress conditions
such as hyper-glycemia and -lipidemia to aberrant changes in organelle dysfunction and identify specific β-cell
nodes of regulation between OGT and mTORC1 signaling that can be targeted for therapeutics to prevent the
development of type 2 diabetes. The proposal incorporates new and timely-needed training in conceptual
knowledge in islet biology, autophagy, and mitochondria, and technical skills including perifusion based insulin
secretion assay, specialize imaging techniques (TEM, confocal, live cell), and Seahorse XF mitochondrial
respiration assay. Scientific communication in oral and written presentation, as well as mentoring leadership will
be an integral part of training to become a successful academician. All the technical resources as well as
dedicated mentors at University of Minnesota and the department of Integrative Biology and Physiology are
available to assist the trainee to successfully complete his F31 proposal and to assist him achieved his career
and academic goals.
项目摘要/摘要
O-GLCNAC转移酶(OGT)是一种营养传感器蛋白,在胰腺β细胞中高度表达。这
酶仅催化靶胞质和核蛋白的翻译后糖基化(o-
Glcnacylation)。 β细胞OGT敲除小鼠会出现严重的糖尿病表型,这表明OGT在
塑造葡萄糖稳态。这项研究的长期目标是了解如何
蛋白O-Glcnacylation形状β细胞健康和功能。我们的数据表明OGT之间有很强的关系
Rapamycin络合物1,MTORC1的机械靶标,MTORC1是β细胞中的关键营养传感器激酶。尽管
在人类糖尿病患者的胰岛中观察到异常的自噬和慢性MTORC1激活,
这些信号通路如何失调的机制尚不清楚。我们提出了回应
为了营养应激,蛋白O-Glcnacylation直接调节MTORC1活性并随后下游
线粒体功能通过自噬过程。我们的中心假设是在营养应激中
疾病,O-Glcnacylation的降低会导致胰岛素分泌通过MTORC1的低激活来定义
和自噬过度激活。该提案的主要目的是描述OGT之间的信号
MTORC1自助噬菌及其对β细胞健康和功能的贡献。特定目标1将调查如何
O-Glcnacylation调节MTORC1活性和β细胞质量和功能。特定目标2将测试是否O-
Glcnacylation在β细胞中调节自噬,并确定自噬失调的后果
在Organelle稳态中。该F31提案具有创新性,因为目前没有联系OGT的研究
胰岛中的MTORC1串扰及其对自噬依赖性β细胞质量和胰岛素的调节
分泌。该提案的成功完成将揭示与营养应力条件联系的机制
例如高血糖和血脂血症,以使细胞器功能障碍的异常变化并确定特定的β细胞
OGT和MTORC1信号之间的调节节点可以用于治疗以防止
2型糖尿病的发展。该提案在概念上结合了新的和及时需要的培训
胰岛生物学,自噬和线粒体的知识以及包括基于炎症的胰岛素在内的技术技能
分泌组件,专门化成像技术(TEM,共聚焦,活细胞)和Seahorse XF线粒体
呼吸测定。口头和书面演讲以及心理领导的科学沟通将
成为成为成功的院士的培训不可或缺的一部分。所有技术资源以及
明尼苏达大学的敬业导师和综合生物学和生理学系是
可用于协助学员成功完成他的F31提案并协助他实现自己的职业生涯
和学术目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seokwon Jo其他文献
Seokwon Jo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
VNN1通过内质网非折叠蛋白应激介导单核巨噬细胞凋亡影响创伤患者脓毒症发生的机制研究
- 批准号:82372549
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
草鱼贮藏过程肌细胞凋亡对鱼肉品质的影响机制研究
- 批准号:32372397
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
MLCK1介导细胞凋亡和自噬影响炎症性肠病进展
- 批准号:82370568
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
EHMT1通过CBX4/MLKL轴调控心肌细胞坏死性凋亡影响心肌缺血再灌注损伤的机制研究
- 批准号:82370288
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
应激颗粒自噬对低氧诱导猪卵泡颗粒细胞凋亡的影响及机制研究
- 批准号:32302741
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 3.37万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 3.37万 - 项目类别:
The transcriptional control of vascular calcification in disease
疾病中血管钙化的转录控制
- 批准号:
10647475 - 财政年份:2023
- 资助金额:
$ 3.37万 - 项目类别:
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
- 批准号:
10648346 - 财政年份:2023
- 资助金额:
$ 3.37万 - 项目类别:
Preclinical Development of a Novel Therapeutic Agent for Idiopathic Pulmonary Fibrosis
特发性肺纤维化新型治疗剂的临床前开发
- 批准号:
10696538 - 财政年份:2023
- 资助金额:
$ 3.37万 - 项目类别: