Multifidelity and multiscale modeling of the spleen function in sickle cell disease with in vitro, ex vivo and in vivo validations
镰状细胞病脾功能的多保真度和多尺度建模,并进行体外、离体和体内验证
基本信息
- 批准号:10237409
- 负责人:
- 金额:$ 66.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-19 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAdhesionsAdhesivenessAdhesivesAnemiaBiomechanicsBlood CirculationBlood specimenCell CommunicationCell ShapeCell modelClinicalCollaborationsComplementComplexComplicationComputer ModelsCouplingDataDecision MakingDevicesEndotheliumErythrocytesExpectancyFiberFiltrationGoalsHematological DiseaseHepaticHereditary DiseaseHereditary SpherocytosisHumanHypoxiaImmune systemIn VitroLeadLearningLifeLinkMalariaMeasuresMechanicsMedicalMicrofluidic MicrochipsMicrofluidicsModelingMolecularMorphologyMutateOrganOutputOxygenPaperParis, FrancePathogenicityPatientsPerfusionPhagocytosisPhysiciansPlayPolymersProcessPrognosisProteinsQuality of lifeResidual stateRiskRoleSamplingShapesSickle CellSickle Cell AnemiaSickle HemoglobinSourceSpleenStem cell transplantSurfaceSystemTrainingValidationacute chest syndromebasebiophysical propertiescohortdeep learningdeep neural networkdesignex vivo perfusionexperimental studyfeedinggene therapyhigh dimensionalityhuman subjectimprovedin silicoin vivolearning progressionmacrophagemimeticsmolecular dynamicsmouse modelmulti-scale modelingneural networkparticlepredictive modelingpreventretention ratesenescencesicklingsimulationspatiotemporaltooltransplantation therapyvaso-occlusive crisis
项目摘要
Project Summary
The spleen plays a key role in the human immune system but also clears senescent red blood cells (RBC) from
the circulation and those altered by acquired or inherited diseases. In patients with sickle cell disease (SCD), the
spleen is one of the first targets of pathogenic processes and a potential protector against major complications.
Under hypoxic conditions, mutated sickle hemoglobin (HbS) polymerizes to fibers which increase both the
stiffness and adhesion of RBC. Splenic filtration of altered RBC prone to sickling (a process that cannot be
directly observed in human subjects) contributes to anemia and likely triggers acute splenic sequestration crises
(ASSC). On the other hand, it potentially prevents complications associated with intravascular sickling. Self-
amplified blockade of vessels with sickled RBCs is indeed a hallmark of vaso-occlusive crises, acute chest
syndrome, and acute hepatic crises, that severely impact the life quality and expectancy of patients with SCD.
We propose to formulate and validate a new predictive modeling framework for how the spleen filters altered
RBC in SCD by synergistically integrating in silico, in vitro, ex vivo and in vivo data using multifidelity-based
neural networks (NN). This will deliver predictive models that can continuously learn when new data become
available, a paradigm shift in biomedical modeling. We will develop multiscale/multifidelity computational models
(and corresponding NN implementations) that link sub-cellular, cellular, and vessel level phenomena spanning
across four orders of magnitude in spatio-temporal scales. This scale coupling will be accomplished using a
molecular dynamics/dissipative particle dynamics (MD/DPD) framework. We will validate these predictive
computational models by data from in vitro and ex vivo experiments, and RBC quantitative features collected in
SCD patients. Specifically, we will use three new spleen-on-a-chip microfluidic devices with oxygen control and
the unique human spleen perfusion setup of our foreign partner, with the following aims: Aim 1: Develop and
validate a splenic inter-endothelial slit filtration model; Aim 2: Develop new models of RBC macrophage adhesion
and of phagocytosis in the spleen; Aim 3: Perform Spleen-on-a-Chip experiments and validation; Aim 4: Validate
the predictive framework based on RBC samples from patients.
Realization of our four Specific Aims will significantly increase our understanding of the complex pathogenic and
protective roles of the spleen in SCD. Feeding our new multifidelity neural networks with morphological and
functional measures of RBC circulating in SCD patients will lead to models for residual spleen function in SCD,
which should help predict the risk of acute splenic sequestration crises, and guide optimal timing for Stem Cell
Transplantation or Gene Therapy. The new paradigm in using deep learning tools to integrate data from different
sources will be applicable to modeling many other blood diseases.
项目摘要
脾在人体免疫系统中起着关键作用,但也能清除衰老的红细胞。
血液循环以及因后天或遗传性疾病而改变的循环。在镰状细胞病(SCD)患者中
脾是致病过程的首要靶点之一,也是预防重大并发症的潜在保护者。
在低氧条件下,突变的镰状血红蛋白(HBS)聚合成纤维,从而增加
红细胞的硬度和粘附性。脾滤过改变的红细胞容易出现镰状(这一过程不能
在人体中直接观察到的)会导致贫血,并可能引发急性脾隔离危机
(ASSC)。另一方面,它有可能预防与血管内镰刀相关的并发症。自我-
伴有镰状红细胞的血管被放大的阻塞确实是血管闭塞危象、急性胸腔积液的特征
严重影响SCD患者生活质量和预期的综合征和急性肝脏危象。
我们建议制定和验证一个新的预测模型框架,用于研究脾滤器如何改变
SCD中的RBC通过使用基于多保真度的协同集成在计算机、体外、体外和体内的数据来实现
神经网络(NN)。这将提供预测模型,当新数据变为
可用,是生物医学建模的范式转变。我们将开发多尺度/多保真度计算模型
(和相应的神经网络实现),它链接跨越的亚细胞、细胞和血管级别的现象
在时空尺度上跨越四个数量级。这种比例耦合将通过使用
分子动力学/耗散粒子动力学(MD/DPD)框架。我们将验证这些预测
通过来自体外和体外实验的数据和收集的RBC数量特征建立计算模型
SCD患者。具体地说,我们将使用三种新的芯片上脾微流控装置,具有氧气控制和
我们的外国合作伙伴的独特的人脾灌流系统,目标如下:目标1:开发和
验证脾内皮细胞间缝隙滤过模型;目标2:开发新的红细胞-巨噬细胞黏附模型
和脾的吞噬作用;目标3:进行芯片上的脾实验和验证;目标4:验证
基于患者红细胞样本的预测框架。
实现我们的四个具体目标将大大增加我们对复杂的致病和
脾在SCD中的保护作用。为我们的新多保真神经网络提供形态和
SCD患者红细胞循环功能测定将导致SCD患者残脾功能模型的建立,
这将有助于预测急性脾隔离危机的风险,并指导干细胞的最佳时机
移植或基因疗法。使用深度学习工具整合来自不同领域的数据的新范式
来源将适用于对许多其他血液疾病进行建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pierre BUFFET其他文献
Pierre BUFFET的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pierre BUFFET', 18)}}的其他基金
Multifidelity and multiscale modeling of the spleen function in sickle cell disease with in vitro, ex vivo and in vivo validations
镰状细胞病脾功能的多保真度和多尺度建模,并进行体外、离体和体内验证
- 批准号:
10685262 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
Multifidelity and multiscale modeling of the spleen function in sickle cell disease with in vitro, ex vivo and in vivo validations
镰状细胞病脾功能的多保真度和多尺度建模,并进行体外、离体和体内验证
- 批准号:
10469422 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 66.3万 - 项目类别:
Operating Grants