Automatic Coding of Therapist and Client Language in Motivational Interviewing to Predict Reductions in Alcohol Use and Problems Using Machine-based Dyadic Multimodal Representation Learning

使用基于机器的二元多模态表示学习在动机访谈中自动编码治疗师和客户语言以预测酒精使用的减少和问题

基本信息

  • 批准号:
    10237313
  • 负责人:
  • 金额:
    $ 55.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Despite the widespread use of Motivational Interviewing (MI), the underlying mechanisms of its success are still poorly understood [14], especially the link between client change talk and subsequent behavior change [14,69]. Previous research has identified two possible active components underlying MI efficacy: a relational component involving elements of the therapist-client dyad including the expression of empathy, and a technical component focused on the differential evocation of client behaviors such as change talk or what a client says about their commitment to change [57]. Current analyses of these components are limited to investigations pertaining to language only and restricted by expensive and arduous manual coding which, despite the time and efforts expended to achieve reliability, may still not be sufficiently sensitive or specific to adequately test the complex theoretical propositions espoused by MI theorists. Our project will address shortcomings of current MI coding systems by introducing a novel computational framework that leverages our recent advances in automatic verbal and nonverbal behavior analyses as well as multimodal machine learning. Our framework aims to jointly analyze verbal (i.e., what is being said), nonverbal (i.e., how something is said), and dyadic (i.e., in what interpersonal context something is said) behavior to better identify in-session change talk and sustain talk that is predictive of post-session alcohol use. We will leverage already collected and annotated audio data from two NIAAA- funded single-session MI randomized clinical trials to improve drinking behavior (N=91; N=158). We will disseminate our findings through an extensive collection of client and dyadic behaviors through our proposed Client and Dyadic Behavior Databases. In addition, we will validate the generalizability of our computational framework using seven additional NIAAA- and federally funded RCTs that used different MI protocols for different target populations.
尽管动机性访谈(MI)被广泛使用,但其成功的潜在机制

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefan Scherer其他文献

Stefan Scherer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stefan Scherer', 18)}}的其他基金

Automatic Coding of Therapist and Client Language in Motivational Interviewing to Predict Reductions in Alcohol Use and Problems Using Machine-based Dyadic Multimodal Representation Learning
使用基于机器的二元多模态表示学习在动机访谈中自动编码治疗师和客户语言以预测酒精使用的减少和问题
  • 批准号:
    10001411
  • 财政年份:
    2019
  • 资助金额:
    $ 55.42万
  • 项目类别:
Automatic Coding of Therapist and Client Language in Motivational Interviewing to Predict Reductions in Alcohol Use and Problems Using Machine-based Dyadic Multimodal Representation Learning
使用基于机器的二元多模态表示学习在动机访谈中自动编码治疗师和客户语言以预测酒精使用的减少和问题
  • 批准号:
    10473711
  • 财政年份:
    2019
  • 资助金额:
    $ 55.42万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 55.42万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 55.42万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.42万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.42万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 55.42万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.42万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 55.42万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 55.42万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 55.42万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了