A community-driven development of the brain imaging data standard (BIDS) to describe macroscopic brain connections

由社区驱动的大脑成像数据标准(BIDS)的开发,以描述宏观的大脑连接

基本信息

  • 批准号:
    10253558
  • 负责人:
  • 金额:
    $ 35.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-06 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The Brain Imaging Data Structure (BIDS) is a BRAIN initiative (R24 MH114705) community-driven standard meant to maximize neuroimaging data sharing, and facilitate analysis tool development. We propose to extend the standard to encompass derivatives resulting from experiments related to both functional as well as structural magnetic resonance imaging data that describe macroscopic brain connectivity estimates. The focus of this proposal is to advance BIDS to describe the entire experimental workflow—from minimally processed anatomical, functional and diffusion MRI data through connectivity matrices and tractometry features—in service of supporting BRAIN initiative studies of large-scale connectivity of human and nonhuman brains. BIDS was initially scoped to MRI data of the brain, but the standard has set up a solid infrastructure to steer the community and has been extended to cover a range of other modalities (PET, EEG, MEG, ECoG). Since its first announcement, BIDS has evolved to become an organized community with shared governance and a strong impact well beyond the U.S. BRAIN initiative. To date, 131 individuals among faculty, students, and postdocs contributed to the development of the standard and the article describing BIDS has been cited 277 times. Current gaps exist in developing BIDS to effectively support the process of scientific results generation. This is because the standard does not yet describe brain features that can be extracted from MRI data and that are routinely used to perform statistical tests and complete scientific studies. These features comprise connectivity maps, structural and functional connections, major white matter tracts, diffusion signal models as well as white matter tractograms and tractometry. Sharing processed data and features in addition to raw and minimally-processed data is critical to accelerating scientific discovery. This is because substantial effort, software, and hardware instrumentation, and know-how are required to bring raw data to a usable state. One previous project (R24 MH114705) laid the foundations for the BIDS derivatives standard, ultimately leading to the existing Common Derivatives standard. However, the current BIDS derivative standard does not cover advanced data derivatives that describe brain connectivity experiments. The current proposal is to advance the BIDS standard beyond preprocessed data to describe data products generated from experiments and models fit after preprocessing. The project will deliver a community-developed standard describing brain connectivity experiments. The standard will be accompanied by software to validate the datasets.
项目摘要/摘要 大脑成像数据结构(BIDS)是一项大脑倡议(R24 MH114705) 社区驱动的标准,旨在最大限度地共享神经成像数据,并促进分析工具 发展。我们建议把这项标准扩展至包括由实验产生的衍生产品。 与功能和结构磁共振成像数据有关,这些数据描述了 宏观的大脑连接性估计。这项提案的重点是提前投标,以描述 整个实验工作流程-从经过最低限度处理的解剖、功能和弥散磁共振数据 通过连接性矩阵和轨迹测量功能-服务于支持大脑主动性 研究人类和非人类大脑的大规模连接。BIDS最初的范围是核磁共振 大脑的数据,但该标准已经建立了坚实的基础设施来引导社区,并已 已扩展到涵盖一系列其他形式(PET、EEG、MEG、ECoG)。从它的第一个 宣布,竞标已经发展成为一个有组织的社区,共享治理和 强大的影响远远超出了美国的大脑倡议。到目前为止,教职员工、学生、 博士后们对该标准的发展做出了贡献,描述投标的文章已经 被引用277次。 目前在开发投标以有效支持科学成果进程方面存在差距 一代。这是因为该标准还没有描述可以提取的大脑特征 这些数据通常被用来进行统计测试和完成科学研究。 这些特征包括连接图、结构和功能连接、主要脑白质 束、扩散信号模型以及白质示踪图和示踪测量。共享已处理 除了原始数据和最少处理的数据之外,数据和功能对于加速科学研究至关重要 发现号。这是因为大量的工作、软件和硬件工具以及技术诀窍 需要将原始数据恢复到可用状态。之前的一个项目(R24 MH114705)奠定了 投标衍生品标准的基础,最终导致现有的共同衍生品 标准的。然而,当前的投标衍生品标准不包括高级数据衍生品 描述大脑连通性实验。目前的建议是将投标标准提高到超过 经过预处理的数据,用于描述由实验和模型生成的数据产品 前置处理。该项目将提供一个由社区开发的描述大脑连接的标准 实验。该标准将伴随着验证数据集的软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Franco Pestilli其他文献

Franco Pestilli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Franco Pestilli', 18)}}的其他基金

A community-driven development of the brain imaging data standard (BIDS) to describe macroscopic brain connections
由社区驱动的大脑成像数据标准(BIDS)的开发,以描述宏观的大脑连接
  • 批准号:
    10460628
  • 财政年份:
    2021
  • 资助金额:
    $ 35.23万
  • 项目类别:
CRCNS: US-France Data Sharing Proposal: Open science & cloud computing of MEEG
CRCNS:美法数据共享提案:开放科学
  • 批准号:
    10428625
  • 财政年份:
    2020
  • 资助金额:
    $ 35.23万
  • 项目类别:
CRCNS: US-France Data Sharing Proposal: Open science & cloud computing of MEEG
CRCNS:美法数据共享提案:开放科学
  • 批准号:
    10266850
  • 财政年份:
    2020
  • 资助金额:
    $ 35.23万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 35.23万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了